VIII Российская конференция ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРИМЕНТ В АЭРОАКУСТИКЕ И АЭРОДИНАМИКЕ

20—25 сентября 2021 г., ГЕЛЕНДЖИК

ГЕНЕРАЦИЯ ТУРБУЛЕНТНЫХ ПОЛЕЙ СКОРОСТИ МЕТОДОМ АНИЗОТРОПНЫХ ФИЛЬТРОВ ДЛЯ ЗАДАЧ АЭРОАКУСТИКИ

А.В. Александров¹, <u>Л.В. Дородницын²</u>, А.П. Дубень¹

¹ Институт прикладной математики им. М.В.Келдыша РАН, Москва ² Московский государственный университет имени М.В.Ломоносова

Работа поддержана РФФИ (Грант № 19-51-80001 БРИКС_т)

Содержание

- Мотивация (Зачем нужны фильтры?)
- Спектральные методы генерации турбулентного поля скорости
- Литература о методах фильтрации белого шума
- Схема построения турбулентного поля скорости на основе RES метода
- Свойства
- Примеры реализации турбулентного поля на основе метода фильтрации

Критерий качества искусственного турбулентного поля скорости

- Совпадение характеристик искусственного и реального физического поля:
 - Несжимаемость (бездивергентность)
 - Спектральные характеристики
 - Одноточечные моменты первого и второго порядков
 - Тензор рейнольдсовых напряжений
 - Двухточечные моменты
 - Совпадение масштабов турбулентности, включая интегральный по каждому направлению (в анизотропном случае)
 - Двухточечные корреляции скорости особенно важны при исследовании шума в дальнем поле
- Вычислительная эффективность

Спектральные методы генерации поля

R. Kraichnan. Diffusion by a random velocity field // Phys. of Fluids, 1970, 13(1), 22–31.

- **A. Smirnov, S. Shi, I. Celik.** Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling // J. Fluids Eng., 2001, 123(2), 359–371.
- M.L. Shur, P.R. Spalart, M.K. Strelets, A.K. Travin. Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems // Flow Turbulence Combust., 2014, 93(1), 63–92.

Изотропное несжимаемое поле

$$v'(\mathbf{x},t) = 2\sqrt{\frac{3}{2}} \sum_{n=1}^{N} \sqrt{q_n(k^n, \mathbf{x})} \, \mathbf{\sigma}_n \cos(\mathbf{d}_n k^n \mathbf{x} + \Omega^n t + \varphi^n)$$

$$q(k^n, \mathbf{x}) = \frac{E(k^n, \mathbf{x})\Delta k^n}{\sum_{m=1}^{N} E(k^m, \mathbf{x})\Delta k^m} \qquad E(k, \mathbf{x}) = \frac{(k/k_e)^4}{(1+2.4(k/k_e)^2)^{17/6}}$$

Масштабирование:

$$u'(\mathbf{x},t) = \mathbf{A}v'(\mathbf{x},t), \quad \mathbf{R} = \mathbf{A}\mathbf{A}^{\mathrm{T}}$$

Оригинальная версия спектрального метода

• Обеспечена несжимаемость поля скоростей.

$$\boldsymbol{u}'(\boldsymbol{x},t) = 2\sqrt{\frac{3}{2}} \sum_{n=1}^{N} \sqrt{g^n(k^n)} \mathbf{Q}(\boldsymbol{\omega}^n) \mathbf{A}(\boldsymbol{x}) \boldsymbol{\xi}^n \cos(k^n \boldsymbol{\omega}^n \cdot \boldsymbol{x} + \Omega^n t + \boldsymbol{\varphi}^n).$$
$$\mathbf{M}_{\mathbf{R}} = \frac{15}{7} \mathbf{R} - \frac{3}{7} \sigma^2 \mathbf{I} = \mathbf{A} \mathbf{A}^T$$
$$g^n(k^n, \mathbf{x}) = \frac{G(k^n, \mathbf{x})}{\sum_{m=1}^{N} G(k^m, \mathbf{x})} \qquad E(k, \mathbf{x}) = \frac{(k/k_e)^4}{(1 + 2.4(k/k_e)^2)^{17/6}}$$

• Kurbanmuradov O., Sabelfeld K., and Kramer P.R. Randomized spectral and Fourier-wavelet methods for multidimensional Gaussian random vector fields // J. Comput. Phys., 245, (2013), 218–234.

Развитое турбулентное течение в канале

NOISEtte: *I.V. Abalakin, P.A. Bakhvalov, A.V. Gorobets, A.P. Duben, T.K. Kozubskaya*. Parallel research code NOISEtte for large-scale CFD and CAA simulations // Vychisl. MetodyProgramm., 2012, v.13, No.3, p.110–125.

Moser R., Kim J., Mansour N. Direct numerical simulation of turbulent channel flow up to Re = 590. Physics of Fluids, 1999, v.11, No.4, p. 943.

Достоинства и недостатки спектральных методов

(+)

(_)

- Простота реализации
- Низкие вычислительные затраты

• Нелокальность: общая гармоника на всю область с сильной неоднородностью среды

• В анизотропном случае не учитываются двухточечные моменты второго порядка

Достоинства и недостатки спектральных методов

(+)

(_)

- Простота реализации
- Низкие вычислительные затраты
- Нелокальность: общая гармоника на всю область с сильной неоднородностью среды
- В анизотропном случае не учитываются двухточечные моменты второго порядка

Методы фильтрации непосредственно строятся по моментам 2-го порядка.

Литература

A. Careta, F. Sagues, Stochastic generation of homogeneous isotropic turbulence with well-defined spectra // Phydical rewiew, 1993, v. 48, № 3, pp. 2279-2287

M. Klein, A. Sadiki, J. Janicka, A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. Journal of Computational Physics 186 (2003) 652–665

Ewert R., Emunds R., CAA Slat Noise Studies Applying Stochastic Sound Sources Based on Solenoidal Digital Filters, AIAA 2005-2862

Ewert R., Broadband slat noise prediction based on CAA and stochastic sound sources from a fast random particle-mesh (RPM) method, Computers & Fluids 37 (2008) 369–387.

Siefert M., Ewert R., Sweeping Sound Generation in Jets Realized with a Random Particle-Mesh Method, AIAA 2009-3369.

Dieste M., Gabard G., Random particle methods applied to broadband fan interaction noise, Journal of Computational Physics 231 (2012) 8133–8151.

Gea-Aguilera F., Gill J., Zhang X., Synthetic turbulence methods for com-putational aeroacoustic simulations of leading edge noise, Computers and Fluids 157 (2017) 240{252. doi:10.1016/j.compfluid.2017.08.039.

Shen Z., Zhang X., Direct anisotropic filter method of generating synthetic turbulence applied to turbulence-airfoil interaction noise prediction, Journal of Sound and Vibration 458 (2019) 544–564

Построение турбулентного поля скорости на основе метода фильтрации

 $\mathbf{u}(\mathbf{r},t) = \nabla \times \boldsymbol{\eta}$

$$\eta_k(\mathbf{r},t) = \int_{R^3} G(\mathbf{r} - \mathbf{r}',t) U_k(\mathbf{r}',t) d\mathbf{r}'$$
$$\mathbf{u}(\mathbf{r},t) = \int_{R^3} \frac{\partial G}{\partial \mathbf{r}} (\mathbf{r} - \mathbf{r}',t) \times \mathbf{U}(\mathbf{r}',t) d\mathbf{r}'$$

Dieste M., Gabard G показали, что стационарная двухточечная корреляция функции тока C(r) связана с ядром фильтра как

 $C(\mathbf{r}) = (G * G)(\mathbf{r}) \Longrightarrow \hat{C}(k) = 8\pi^3 \hat{G}^2(k)$

Зная корреляцию функции тока, можно получить ядро фильтра.

 $\mathbf{\eta}$ – функция тока $U_k(\mathbf{r}',t)$ – поле белого шума $\langle U_k(\mathbf{r},t) \rangle = 0$ $\langle U_i(\mathbf{r}',t) U_j(\mathbf{r}'+\mathbf{r},t) \rangle = \delta(\mathbf{r}) \ \delta_{ij}$

G- скалярное ядро фильтра

Ядро фильтра в однородном изотропном случае

Для построения ядра фильтра можно использовать известный энергетический спектр

$$F_{ij}(k) = \left[k^2 \delta_{ij} - k_i k_j\right] E(k) \Longrightarrow \widehat{G}(k) = \frac{\sqrt{E(k)}}{4\sqrt{2}\pi^2 k^2}$$

для Гауссова энергетического спектра ядро фильтра будет иметь вид

$$G(r) = \frac{1}{\sqrt{\pi\lambda}} u_{rms} e^{-\pi r^2/(2\lambda^2)}$$

для энергетического спектра фон Кармана ядро фильтра будет иметь вид

$$G(r) = \frac{0.254u_{rms}K_{0.083}\left(\frac{\sqrt{\pi}r\Gamma(5/6)}{\lambda\Gamma(1/3)}\right)}{\lambda^{0.417}r^{0.083}}$$

Осесимметричный случай

Chandrasekhar

$$F_{ij}(k) = \left(k^2 \delta_{ij} - k_i k_j\right) \hat{C}(\mathbf{k}) + \left[\left(k^2 - \left(k_m \lambda_m\right)^2\right) \delta_{ij} - k_i k_j - k^2 \lambda_i \lambda_j + k_m \lambda_m \left(k_j \lambda_i + k_i \lambda_j\right)\right] \hat{\kappa}(\mathbf{k})$$

E. J. Kerschen , P. R. Gliebe, Noise Caused by the Interaction of a Rotor with Anisotropic Turbulence, AIAA Journal Vol. 19, No. 6, June 1981

$$\widehat{\aleph}(\mathbf{k}) = \left(2\frac{u_t^2}{u_a^2} - \frac{l_t^2}{l_a^2} - 1\right)\widehat{C}(\mathbf{k}), \quad \widehat{C}(\mathbf{k}) = \frac{2l_a l_t^4 u_a^2}{\pi^2 z^3}, \quad z = \left(1 + l_a^2 k_a^2 + l_t^2 k_t^2\right)^{3/2}$$
$$\widehat{G}(\mathbf{k}) = \frac{l_t^{1/2} l_t^2 u_a}{2\pi^{2.5} \left(1 + l_a^2 k_a^2 + l_t^2 k_t^2\right)^{3/2}} \qquad G(\mathbf{r}) = \frac{2K_0\left(\zeta\right)}{\pi^{1.5} l_a^{1/2}}, \quad \zeta(\mathbf{r})$$

Дискретная модель

 $\Omega_{n,k} = \pm 1$

 $\Delta_k < \frac{l_i}{8}$

$$u_{x}(\mathbf{r},t) = \sum_{n=1}^{N} \left(\Omega_{n,z} \frac{\partial G(\mathbf{r})}{\partial y} - \Omega_{n,y} \frac{\partial G(\mathbf{r})}{\partial z} \right) \sqrt{\Delta_{x} \Delta_{y} \Delta_{z}}$$
$$u_{y}(\mathbf{r},t) = \sum_{n=1}^{N} \left(\Omega_{n,x} \frac{\partial G(\mathbf{r})}{\partial z} - \Omega_{n,z} \frac{\partial G(\mathbf{r})}{\partial x} \right) \sqrt{\Delta_{x} \Delta_{y} \Delta_{z}}$$
$$u_{z}(\mathbf{r},t) = \sum_{n=1}^{N} \left(\Omega_{n,y} \frac{\partial G(\mathbf{r})}{\partial x} - \Omega_{n,x} \frac{\partial G(\mathbf{r})}{\partial y} \right) \sqrt{\Delta_{x} \Delta_{y} \Delta_{z}}$$

 $\Delta_k -$ расстояние между центрами вихрей по каждому из направлений

Инжекционные вихри

снизу на базе спектра Кармана.

Инжекционные вихри

Компонетна поля скорости единичных вихрей, построенных на базе Гауссова и Кармановского спектров, в сечении, проходящем через их центры при y=z=const.

Реализации поля скорости

Компонента скорости для поля, полученного с использованием фильтров на базе Гауссова (слева) и Кармановского (справа) спектров

Компонента поля скорости, построенного с использованием анизотропного фильтра (Kerschen & Gliebe)

Размеры зоны влияния

 $T_{est} = 5$

Продольная и поперечная корреляционные функции Кармана-Ховарта для сгенерированных изотропных турбулентных полей с различными радиусами зоны влияния

Анизотропное поле скорости

- Строится изотропное векторное поле $v'(\mathbf{x}, t)$
- Поле линейно масштабируется в соответствии с заданным тензором рейнольдсовых напряжений

 $u'(\mathbf{x},t) = \mathbf{A}v'(\mathbf{x},t), \quad \mathbf{R} = \mathbf{A}\mathbf{A}^{\mathrm{T}}$

$$A = \{a_{ij}\} = \begin{pmatrix} \sqrt{R_{11}} & 0 & 0 \\ R_{12}/a_{11} & \sqrt{R_{22} - a_{21}^2} & 0 \\ R_{31}/a_{11} & (R_{22} - a_{21}a_{31})/a_{22} & \sqrt{R_{33} - a_{31}^2 - a_{32}^2} \end{pmatrix}$$

Компоненты тензора рейнольдсовых напряжений

Тензор **R** $\frac{2}{15} \begin{pmatrix} 5 & -2.8 & 0 \\ -2.8 & 5 & 0 \\ 0 & 0 & 20 \end{pmatrix}$

Статистика сгенерированного анизотропного поля

CEAA

Заключение

- Начальная часть работы...
- В ряде задач (в т.ч. азроакустике) метод фильтрации незаменим.
- На примере однородной изотропной турбулентности в кубе показано, что уменьшение радиуса в два раза является допустимым.
- Продемонстрировано выполнение одноточечных моментов в методе, основанном на факторизации по Холецкому тензора рейнольдсовых напряжений.
- В ближайшей перспективе вихреразрешающее моделирование обтекания крылового профиля.
- Планируется переход к тензорным фильтрам.
- Вместо аналитического преобразования Фурье численное построение фильтра?