

Возможности и ограничения RANS и LES на примере расчета течения в тестовой решетке T106C

А.П. Дубень, Т.К. Козубская Сектор вычислительной аэродинамики и аэроакустики ИПМ им. М. В. Келдыша РАН

О.В. Маракуева, Д.В. Ворошнин ООО «Нумека», Санкт-Петербург

Введение

- Для снижения массы двигателя проектировщики вынуждены уменьшать количество лопаток в турбине низкого давления (ТНД), при этом сохраняя нагрузку на ступень
- ТНД работает в широком диапазоне чисел Re, на крейсерском режиме низкие значения (100 тыс. и меньше)
- В рамках него большая часть пограничного слоя (ПС) ламинарная, на лопатке может образоваться ламинарно-турбулентный (ЛТ) переход

о чаще всего, вследствие образования локального отрыва ламинарного ПС

- о как для RANS учитывающих ЛТ переход (т.к. модели ЛТП эмпиричны)
- о так и для LES/DNS (ооочень дорого)
- На примере турбинной высоконагруженной решетки лопаток T106C проводится исследование возможностей и ограничение и оценка требований RANS и LES/DNS для корректного предсказания потерь полного давления возле лопаток THД

Т106С: физическая постановка задачи

Эксперимент: Stotz, S., Guendogdu, Y., and Niehuis, R. Experimental Investigation of Pressure Side Flow Separation on the T106C Airfoil at High Suction Side Incidence Flow // ASME. J. Turbomach., 2017, 139(5): 051007

β_1	
yx	

Параметр	Обозначение	Величина
еоретическое число Маха на выходе	Ma _{2th}	0.65
Хорда	I	100 мм
Осевая хорда	l _{ax}	85.9 мм
Относительный шаг	t/l	0.95
Входной угол потока	β ₁	127.7°
Выходной угол потока	β ₂	29.4°

$$\operatorname{Re}_{2\text{th}} = \sqrt{\frac{\gamma}{R}} \frac{l}{C_{S}} \frac{Ma_{2\text{th}}P_{k} \left[T_{t1} / \left(1 + 0.5(\gamma - 1)Ma_{2\text{th}}^{2} \right) + S \right]}{\left[T_{t1} / \left(1 + 0.5(\gamma - 1)Ma_{2\text{th}}^{2} \right) \right]^{2}}$$
$$Ma_{2\text{th}} = \left\{ \frac{2}{\gamma - 1} \left[\left(P_{t1} / P_{k} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right] \right\}^{\frac{1}{2}}$$

CEAA

На входе:

- полная температура T_{t1} = 303.15 К;
- интенсивность турбулентности *Tu* = 3 %;
- масштаб вихря Л=20 мм.

Режимы обтекания

Re _{2th} , •10 ⁴	Р ₊₁ , Па	Р _к , Па
9	7860.8	5900
20	17467	13110
50	43667.6	32775

22 сентября 2021 г.

P_{t1}- полное давление на входе;
P_k- статическое давление на выходе;
C_s и S – константы закона Сазерленда для динамической вязкости;
R = 287,3 Дж/кг·К, γ = 1.4 – газовая постоянная и показатель адиабаты для воздуха соответственно.

Т106С: экспериментальные данные

4

Кратко о подходах RANS, (WR)LES, WMLES

RANS

Reynolds Averaged Navier-Stokes

- $\Delta_{wn}^+ < 1$
- разрешение градиентов вдоль стенки

LES (WRLES)

Large Eddy Simulation Wall-Resolved LES

Подход		Δ_z^+
LES	40	20
LES с подробный разрешением		10
DNS	15	10
DNS с подробным разрешением		7

WMLES

Wall-Modelled LES

CEAA

5

NOISEtte: описание вихреразрешающего алгоритма

- Вихреразрешающий гибридный RANS-LES метод IDDES последней модификации [1]
 - адаптивное переключение между RANS, (WR)LES и WMLES в зависимости от сеточного разрешения и условий течения
 - $\,\circ\,\,$ адаптивный подсеточный масштаб Δ_{SLA}
- Турбулентный контент на входе
 - о генератор синтетической турбулентности STG [2]
 - о в виде объемного распределенного источника VSTG [3]
- Вершинно-центрированная EBR схема повышенной точности
 - второй порядок точности на произвольных неструктурированных сетках в рамках конечнообъёмного подхода
 - 5-6 порядок точности на сетках типа равномерных решёток (трансляционно-инвариантные сетки)
 - гибридная CD-Upwind-WENO схема, веса адаптивно выбираются в зависимости от локальных особенностей течения

¹E. Guseva, A. Garbaruk, and M. K. Strelets, Assessment of Delayed DES and Improved Delayed DES Combined with a Shear-Layer-Adapted Subgrid Length-Scale in Separated Flows," Flow, Turbulence and Combustion, vol. 98, pp. 481-502, 2017.

² M. Shur, P. Spalart, M. Strelets, and A. Travin, Synthetic Turbulence Generators for RANS-LES Interfaces in Zonal Simulations of Aerodynamic and Aeroacoustic Problems," Flow, Turbulence and Combustion, vol. 93, pp. 63-92, 2014.

³ M. Shur, M. Strelets, A. Travin, A. Probst, S. Probst, D. Schwamborn, S. Deck, A. Skillen, J. Holgate, and A. Revell, \Improved Embedded Approaches, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 134, pp. 65-69, 2017.

CEAA

- Интегрирование по времени
 - неявная схема на основе Ньютоновских итераций
 - о метод бисопряженных градиентов (BCGStab)
 - CFL_{max}=10

22 сентября 2021 г. Вычислит

Вычислительный эксперимент в аэроакустике и аэродинамике 2021

Сетки для IDDES расчетов (1/2)

Фрагменты сетки *fine*

CEAA

Сетка	N _n , ∙10 ⁶	N _{n.2D} , ·10 ³	N _z	Δ_{τ}/I	$\Delta_{\rm sl}/l$	Δ_z/I
fine	83.2	533	151	1.5·10 ⁻³	10 ⁻³	10 ⁻³
coarse	10.2	127.9	75	3·10 ⁻³	2·10 ⁻³	2·10 ⁻³

Размер домена по размаху: $L_z = 0.15l$

Сетки для IDDES расчетов (2/2)

Шаги сетки вдоль лопатки (на стороне разряжения) в переменных закона стенки

Корреляционный коэффициент в точках Р1-Р4

22 сентября 2021 г.

IDDES: источник турбулентных пульсаций (VSTG)

- Тестовая задача для настройки источника
- воспроизводятся условия течения основной задачи
- по Y и Z периодика

IDDES: мгновенные картины течения

22 сентября 2021 г.

Вычислительный эксперимент в аэроакустике и аэродинамике 2021

10

IDDES: распределения на поверхности лопатки

- при $\mathrm{Re_{2th}}=50\cdot10^4$ ЛТ переход без отрыва
- уменьшение Re ведет к увеличению разницы между coarse и fine
- при *Tu*=0% более обширный отрыв
- ЛТ переход критичное место: недоразрешение (*coarse*) или неточное воспроизведение входящего потока (*Tu*=0%) ведет к сильному рассогласованию с экспериментом

Вычислительный эксперимент в аэроакустике и аэродинамике 2021

IDDES: характеристики на выходе

	Re _{2th} =9·10 ⁴		Re _{2th} =20·10 ⁴		Re _{2th} =50·10 ⁴	
ійодель	ζ, %	ζ/ζ _{ref}	ζ, %	ζ/ζ _{ref}	ζ, %	ζ/ζ _{ref}
Exp.	_	2.25	_	1.415	-	1
fine	4.37	2	2.78	1.28	2.18	1
coarse	5.26	2.81	2.57	1.37	1.87	1
fine Tu=0%	6.18	3	3.18	1.54	2.06	1

22 сентября 2021 г.

RANS: постановка задачи

- Numeca Fine/Turbo v. 14.1
- Воздух как термически совершенный газ;
- RANS с замыканием SST и BSL-EARSM моделями турбулентности;
- Критерий AGS и $\gamma \widetilde{Re}_{\theta t}$ модель ЛТП;
- ГУ согласно эксперименту: на входе T_{t1}, P_{t1}, Tu, Λ, β₁, на выходе P_k

	Параметр	Сетка №1	Сетка №2	Сетка №3
	Общее количество узлов, шт	206 тыс.	554 тыс.	1.26 млн
	Количество узлов в О-блоке, шт	25	49	57
n	Мин. угол скошенности	45.1°	45.7°	46.1°
	Макс. коэффициент роста	1.9	1.9	1.6
	Коэффициент роста в пристеночной области	1.0-1.3	1.0-1.2	1.0-1.2
	Макс. соотношение сторон	571	571	571
	Кол-во ячеек в плоском слое (без входных и выходных блоков), шт	11 тыс.	37 тыс.	83 тыс.

22 сентября 2021 г. Вычислительный эксперимент в аэроакустике и аэродинамике 2021

RANS: моделирование ЛТП

Перемежаемость *γ* - доля времени, в течение которого поток является турбулентным. В моделях ЛТП весовой коэффициент, контролирующий генерацию *k* (*k* и ω) в моделях турбулентности и турбулентности в SA модели.

Критерий Abu-Ghannam и Shaw (AGS)

 на базе экспериментальных исследований по обтеканию плоской пластины с различными градиентами давления

число Re_{*θt*}, при котором начинается переход:

$$Re_{\theta t} = 162 + exp\left[F(\lambda_{\theta}) - \frac{F(\lambda_{\theta}) * Tu}{6.91}\right]$$

$$(\theta^{2}) \quad dU$$

$$\lambda_{\theta} = \left(\frac{\theta^2}{\nu}\right) * \left(\frac{dU_e}{ds}\right)$$

U_e – скорость и *Tu* – интенсивность турбулентности на <u>границе пограничного слоя (нелокальные параметры!)</u>, *s* – расстояние от передней кромки, θ – толщина потери импульса в ламинарном слое, ν – кинетическая вязкость.

- при достижении *Re_θ* критического значения перемежаемость переключается на ненулевое значение
- применяется с SA, SST и k-є моделями турбулентности
- совместима с NLH

Модель γ - $\widetilde{Re}_{\theta t}$ Langtry и Menter

- диффундирование критерия, аналогичного AGS, внутрь пограничного слоя путем его связи с локальными параметрами через вихревое число Рейнольдса и записи дополнительного уравнения переноса.
- уравнение переноса для перемежаемости
- содержит поправку для описания перехода, вызванного отрывом
- существует множество корреляций для замыкания модели, которые описывают функцию, определяющую длину перехода, и критическое число Рейнольдса, при котором начинается рост перемежаемости.
- применяется с SST и EARSM моделями турбулентности.

RANS: результаты без моделей ЛТП

Абсолютные потери полного давления ζ, %

Расчет	$Re_{2th}=9\times10^4$	$Re_{2th}=20\times10^{4}$	$Re_{2th}=50\times10^{4}$
IDDES	4.37	2.78	2.18
SST	4.18	3.48	2.99
BSL-EARSM	8.58	7.9	7.43

RANS: результаты AGS SST

Гладкое распределение – Dhawan и Narisimha

RANS: результаты $\gamma - \widetilde{Re}_{\theta t}$ SST

17

RANS: результаты $\gamma - \widetilde{Re}_{\theta t}$ SST и EARSM

RANS: характеристики на выходе

19

RANS: потери полного давления

Абсолютные потери полного давления ζ, %

Расчет	$Re_{2th} = 9 \cdot 10^4$	$Re_{2th} = 20 \cdot 10^4$	$Re_{2th}=50\cdot 10^4$
IDDES	4.37	2.78	2.18
SST	4.18	3.48	2.99
BSL-EARSM	8.58	7.9	7.43
AGS SST ү бин.	4.4	2.92	2.67
AGS SST ү глад.	5.06	3.19	2.25
$\gamma - \widetilde{Re}_{ heta t}$ SST Langtry	4.04	2.95	2.71
$\gamma - \widetilde{Re}_{ heta t}$ SST Sorensen	5.13	3.31	2.26
$\gamma - \widetilde{Re}_{ heta t}$ SST Kelterer	4.19	2.92	2.43
$\gamma - \widetilde{Re}_{ heta t}$ BSL-EARSM Kelterer	4.59	3.24	2.6

Вычислительная стоимость расчетов

IDDES

83.2 млн. узлов, $11l/U_0$

- 80MPI x 12OpenMP x HT (960 CPUs): ~30.5 ч Intel Xeon E5-2680v3 (12 CPU+HT) 29260 CPUh
- З узла по 4 = 12 GPU NVIDIA V100 32GB
 ~28.5 часа

RANS

1.26 млн узлов

~ **40-50 мин** в зависимости от ЛТП модели на 4 ядрах Intel(R) Xeon (R) CPU E5-2690v3

Заключение

- Сформирована эталонная постановка для вихреразрешающего моделирования течения в высоконагруженной турбинной решетке при низких числах Рейнольдса
 - о определено необходимое сеточное разрешение
 - о показана важность учета входной турбулентности
 - о получено хорошее согласование с экспериментальными данными

22 сентября 2021 г.

- Сформирована постановка в рамках RANS для моделирования течения в решетке T106C при низких числах Рейнольдса
 - о определено необходимое сеточное разрешение
 - \circ исследованы различные способы моделирования ЛТП: критерий AGS и модель $\gamma \widetilde{Re}_{ heta t}$
 - о показана сильная чувствительность результатов к настройкам моделей ЛТП и выбору модели турбулентности
 - о по результатам валидации победила выбрана модель $\gamma \widetilde{Re}_{ heta t}$ BSL-EARSM с подключением корреляций Kelterer
- Несмотря на более высокую точность моделирования, применение вихреразрешающих методов для анализа течения 3D лопаток на данный момент не представляется возможным
- Использование эмпирической RANS модели для реальной геометрии требует предварительной тщательной калибровки

