VIII Российская конференция ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРИМЕНТ В АЭРОАКУСТИКЕ И АЭРОДИНАМИКЕ

20—25 сентября 2021 г., ГЕЛЕНДЖИК

МОДЕЛИРОВАНИЕ АЭРОУПРУГОГО ПОВЕДЕНИЯ ЛОПАТОК ОСЕВОГО КОМПРЕССОРА В НЕСТАЦИОНАРНОМ ПОТОКЕ

МАРАКУЕВА О.В. ВОРОШНИН Д.В.

ООО «НУМЕКА»

- увеличение эффективности и уменьшение массы → увеличение аэродинамической нагрузки на лопатки, повышение вероятности возникновения нежелательных аэромеханических явлений
- исследование динамического поведения лопаток в нестационарном потоке комплексная проблема
- одна из наиболее сложных задачи анализ автоколебаний, в том числе флаттера
- прогнозирование флаттера:
 - критериальные оценки (напр., число Струхаля)
 - вероятностно-статистические подходы
 - численные подходы:
 - совместное решение газодинамики и твердотельной задачи
 - последовательное решение газодинамической и твердотельной задач или одной из них с использованием аналитических функций для другой (напр. энергетический метод)

Цель – отработка методов численного моделирования аэроупругого взаимодействия лопаток ГТД и нестационарного набегающего потока в ПК *Numeca* Fine/Turbo

Задачи:

- разработка математических моделей двумерных профилей и трехмерных лопаток турбомашин, позволяющих провести численную оценку устойчивости к флаттеру
- проведение идентификации полученных результатов на основании открытых экспериментальных исследований по продувкам плоских решеток стандартных конфигураций
- сравнение различных подходов оценки устойчивости трехмерной лопатки (энергетический метод и связанная задача)

Колебание будет неустойчивым, если лопатка в результате полного цикла получит энергию от потока воздуха

Предполагается, что все лопатки колеблются по одной и той же форме, с одинаковой частотой и амплитудой (постановка соответствует случаю с наименьшей устойчивостью). Основное предположение - автоколебания происходят по собственным частотам и формам

Алгоритм:

• определение собственных форм и частот колебаний лопатки без учета нестационарных газовых нагрузок

 $\Xi = -A_{za3} = -\int_{0}^{T} \int_{0}^{l} (Fv + M\omega) ds dt$

- выбор форм и частот, для которых наиболее вероятно возникновение автоколебаний
- задание закона движения лопатки: форма, частота, амплитуда, фазовый сдвиг между лопатками
- проведение нестационарного газодинамического анализа при заданном движении лопаток
- вычисление работы газа над лопаткой за один период колебаний. Проверка критерия флаттера

Критерий флаттера: коэффициент демпфирования

- $_{\circ}$ неустойчивость: Ξ < 0
- $_{\circ}$ устойчивость: $\Xi \geq 0$

МОДЕЛИРОВАНИЕ ОБТЕКАНИЯ КОЛЕБЛЮЩЕЙСЯ ПЛОСКОЙ РЕШЕТКИ ДОЗВУКОВЫМ ПОТОКОМ

ЭНЕРГЕТИЧЕСКИЙ МЕТОД

Phone: +7 (812) 702 5249

1-ая стандартная конфигурация

Bolcs A. Aeroelasticity in Turbomachines – Comparison of Theoretical and Experimental Cascade Results / A. Bolcs, T.H. Fransson// Communication du LTAT-EPFL, Lausanne, Switzerland. –1986. – 230 p.

Решётка из 11 лопаток с профилем NACA 65, совершающих заданные крутильные колебания относительно центра хорды:

$$\tilde{\alpha}_m(t) = \alpha^m(x, y) e^{i\{\omega(m)t\}},$$

 α^m – амплитуда угла установки, $\omega(m)$ – круговая частота

Положение максимальной толщины профиля	х	0.5
Отношение толщины к хорде	d	0.06
Хорда	с, м	0.1524
Отношение шага решетки к хорде профиля	τ	0.75
Угол установки профиля	γ	55°
Кривизна профиля		10°
Высота лопатки	s, M	0.254

Число Маха на входе	M ₁	0.18
Угол атаки	i	6°
Отношение статического давления к полному на входе	p ₁ /p _{w1}	0.979
Отношение статического давления на выходе к полному на входе	p ₂ /p _{w1}	0.9852
Угол потока на входе	β1	62.5°
Амплитуда колебаний профилей	α	2.0°
Частота колебаний профилей	f, Гц	15.5
Межлопаточный угол сдвига фаз	σ	±45°, ±90°, ±135°, 0°, 180°

Постановка задачи

Основные допущения:

- двумерный характер течения моделирование проведено для плоского слоя толщиной в одну ячейку
- в модель включены только 5 из 11 лопаток, т.к. анализируются параметры только на средней лопатке

Постановка:

- МКО ПО Numeca Fine/Turbo v.13.1
- гексагональная сетка: 183 тыс. ячеек, у+<1
- термически совершенный газ, закон Сазерленда для µ
- RANS для неподвижной решетки
- URANS для колеблющихся профилей, ∆t = 6.5 · 10⁻⁴ с (100 шагов на период колебаний)
- SST модель турбулентности
- граничные условия:
 - ₀ на входе: Р₀ = 101.3 кПа; Т₀ = 285.8 K; V₂/|V| = 0.47; V₂/|V| = 0.88.
 - ₀ на выходе: Р = 99.7 кПа.
 - 。 стенки адиабатные

Алгоритм решения

На каждом временном шаге проводится:

- деформация сетки (перемещение сеточных узлов) на основании заданного угла установки методом RBF
- проведение газодинамического расчета

Результаты для колеблющейся решетки

Результаты для колеблющейся решетки

Коэффициент аэродинамического демпфирования:

$$\Xi_{\alpha} = \frac{-\tilde{c}_{w\alpha}}{\pi \alpha^2} = -Im\{\tilde{c}_m\}$$

ИССЛЕДОВАНИЕ АЭРОУПРУГОГО ПОВЕДЕНИЯ РАБОЧЕЙ ЛОПАТКИ ОСЕВОГО КОМПРЕССОРА В НЕСТАЦИОНАРНОМ ПОТОКЕ

ЭНЕРГЕТИЧЕСКИЙ МЕТОД СВЯЗАННАЯ ЗАДАЧА

Ступень 37. Постановка задачи

Рассматривается два подхода:

- колебания с заданием амплитуды на каждом временной шаге (энергетический метод) - NLH метод
- колебания с определением амплитуды на основании газодинамического расчета (связанная задача) URANS

Постановка:

- МКО ПО Numeca Fine/Turbo v.13.1
- гексагональная сетка: y⁺ < 1, РК 1.14 млн ячеек, НА 730 тыс. ячеек
- термически совершенный газ, закон Сазерленда для µ
- SA модель турбулентности
- граничные условия:
 - ₀ на входе: Р₀ = 101.3 кПа; Т₀ = 288.2 К; V₂/|V| = 1
 - 。 на выходе: Р
 - стенки адиабатные
 - частота вращения N = 17188 об/мин
- колебания РК по 1ой собственной форме ightarrow определена МКЭ

Энергетический метод

Алгоритм:

- деформация сетки (перемещение сеточных узлов) на основании заданных перемещений
- проведение газодинамического расчета

Постановка:

- Амплитуда 0.7% от хорды= 0.4 мм
- Рабочая точка
- NLH 3h

Параметры:

• межлопаточный угол сдвига фаз (IBPA)

$$\sigma = 2\pi \cdot \frac{n}{N_{\Lambda}}$$
, n = 1, 2, 3...и т.д.,
Nл – число лопаток

Энергетический метод

Алгоритм:

- деформация сетки (перемещение сеточных узлов) на основании заданных перемещений
- проведение газодинамического расчета

Постановка:

- Амплитуда 0.7% от хорды= 0.4 мм
- Рабочая точка
- NLH 3h

Параметры:

• межлопаточный угол сдвига фаз (IBPA)

$$\sigma = 2\pi \cdot \frac{n}{N_{JI}}$$
, n = 1, 2, 3...и т.д.,
Nл – число лопаток

• критерий флаттера – мощность газовых сил

$$P_{\rm ras} = \int \left(p\vec{n} + \tau\vec{n} \right) \overrightarrow{V_g} \, dS$$

τ — вязкие напряжения, V_g — скорость деформации, S — поверхность лопатки

Phone: +7 (812) 702 5249

Web: numeca.ru

Мощность газовых сил за период колебаний Изолированное РК, IBPA = 0

Энергетический метод

Связанная задача

Алгоритм:

• вычисление перемещений:

$$y''_{j}(t) + 2\omega_{j}\xi_{j}y'_{j}(t) + \omega_{j}^{2}y_{j}(t) = F_{j}(t)$$

$$F_{j}(t) = \{\varphi_{j}\}^{T}\{F(t)\}$$

$$\{u(t)\} = \sum_{i=1}^{n} y_{i}(t)\{\varphi_{i}\}$$

- *у*(*t*) вектор главных координат
- $\xi-$ коэффициент демпфирования
- ω собственные частоты
- $\{ \varphi \}$ собственные формы
- *{u(t)}* вектор узловых перемещений
- *{F(t)}* внешние нагрузки
- деформация сетки (перемещение сеточных узлов)
- проведение газодинамического расчета

Постановка:

- URANS: Δt = 5 · 10⁻⁶ с (20 шагов на межлопаточный канал PK, 175 шагов на период колебаний)
- РК (с 1 и с 18 лопатками в секторе)
- ступень со скорректированным количеством лопаток 36 РК – 48 НА (вместо 46)

Связанная задача. Изолированная лопатка РК

Обобщенные перемещения 18ти лопаток в точке №3

Перемещения передней кромки по окружности на трех режимах

	max_ Dxyz , мм	$ar\eta$, %
Режим 1	0.348	83.25
Режим 2	0.353	84.40
Режим 3	0.424	78.75
Стац. лопатка режим 1	-	83.19
Стац. лопатка режим 2	-	84.42
Стац. лопатка режим 3	-	78.94

Радиальный зазор = 0.356 мм D_{LE} на периферии = 0.25 мм Хорда на периферии = 56.5 мм

Связанная задача. РК в составе ступени

Фурье-разложение аэродинамического момента

	max_ Dxyz , мм	$ar\eta$, %
Режим 1	0.348	83.25
Режим 2	0.353	84.40
Режим 3	0.424	78.75
Стац. лопатка режим 1	-	83.19
Стац. лопатка режим 2	_	84.42
Стац. лопатка режим 3	_	78.94
Режим 2 ступень	≈ 0.356	83.98
Стац. лопатка режим 2 ступень		83.97

E mail: contact@numeca.ru

Временные затраты

Ступень: 9 РК и 12 НА в секторе

Расчет	Время
STEADY-STATE	1
URANS	11.5
URANS 2-way FSI	15.23

Ротор: 1 лопатка на сектор, 2ой режим (рабочая точка)

Расчет	Время
STEADY-STATE	1
URANS	8.8
NLH 1-way FSI	5.6
URANS 1-way FSI	9.6
URANS 2-way FSI	10.2

- Отработаны методы исследования аороупругого поведения лопаток осевых компрессоров в нестационарном потоке воздуха. Показана эффективность применения NLH подхода при решении задачи флаттера
- Проведено исследование нестационарных характеристик потока при учете колебаний лопаток для плоской решетки с идентификацией результатов
- Исследовано аэроупругое поведение РК осевого компрессора с применением энергетического подхода и в связанной постановке. Проведена оценка влияния вязкостных эффектов и статорного венца на аэроупругое демпфирование

СПАСИБО ЗА ВНИМАНИЕ!

Phone: +7 (812) 702 5249

Web: numeca.ru

E mail: contact@numeca.ru