VIII Российская конференция ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРИМЕНТ В АЭРОАКУСТИКЕ И АЭРОДИНАМИКЕ

20—25 сентября 2021 г., ГЕЛЕНДЖИК

ПОДХОДЫ К МОДЕЛИРОВАНИЮ НАДРОТОРНЫХ УСТРОЙСТВ В ОСЕВЫХ КОМПРЕССОРАХ

<u>МАРАКУЕВА О.В.</u> ВОРОШНИН Д.В. МУРАВЕЙКО А.С.

ООО «НУМЕКА»

Для увеличения диапазонов устойчивой работы компрессоров широко применяются надроторные устройства (НРУ) различного типа

Цели работы:

- Разработка математических моделей осевых компрессоров с учетом щелевого НРУ:
 - двухступенчатый вентилятор
 - 。 ступень М-1
 - 。 ступень КНД
- Исследование влияния положения и типа ротор-статор интерфейса между РК и НРУ
- Оценка влияния НРУ на работу компрессоров на различных частотах вращения

Двухступенчатый вентилятор

Количество лопаток: PK1 – 22, HA1 – 42, PK2 – 40, HA2 – 72.

НРУ: кольцевая полость, которая соединяется с проточной частью через 120 пазов, наклоненных в направлении вращения на 45°. Перекрывает периферию РК1 до середины осевой хорды

Постановка задачи

Сеточная модель с НРУ

- блочно-структурированная сетка AutoGrid5+IGG
- радиальный зазор у РК1 и РК2 0.3 мм
- втулочный зазор у НА1
- ~ 4.5 млн узлов
- y⁺ < 1

Постановка

- Numeca Fine/Turbo v. 13.1
- термически-совершенный газ
- NLH Basic 3 гармоники
- модель турбулентности Spalart Allmaras
- вход: P₀ = 1 атм, T₀ = 288.15 K, V_z/|V| = 1
- выход: варьирование Р или G

Влияние положения РС интерфейса между НРУ и РК

Высота каждого буферного блока со стороны НРУ ~2% от высота паза Высота буферных блоков в зазоре РК до 30% зазора

Влияние положения РС интерфейса между НРУ и РК

<u>RS на периферии</u> НРУ – РС РК

E mail: contact@numeca.ru

Высота каждого буферного блока со стороны НРУ ~2% от высота паза

Высота буферных блоков в зазоре РК до 30% зазора

Phone: +7 (812) 702 5249

Финальная модель. Влияние количества гармоник

MECA

РОССИЯ

Влияние НРУ на различных режимах

	N = 70%		N = 85%		N = 100%	
	КПД_рт, %	∆ Ky, %	КПД_рт, %	Δ Ky, %	КПД_рт, %	Δ Ky, %
Гладкая ПЧ						
НРУ						
ΔΗΡΥ	+0.04%	+6.65	-0.44	+1.1%	-0.1%	-0.1%

Phone: +7 (812) 702 5249

Web: numeca.ru

E mail: contact@numeca.ru

Течение на предсрывных точках. Гладкая ПЧ

Течение на периферии РК1 на режиме 70 %. Гладкая ПЧ

Рабочая точка

Relative Mach Number 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0

Предсрывная точка (G = 4.85 кг/с)

Phone: +7 (812) 702 5249

Под действием разницы давлений в осевых пазах реализуется перетечка воздуха из межлопаточного канала со стороны давления лопатки в область перед передней кромкой:

- отбирается воздух из застойных зон
- уменьшается нагрузка на сторону давления лопатки в области паза и интенсивность вихря перетечки
- дополнительные потери на смешение
- инжектируемый воздух имеет большую закрутку против направления вращения, что может приводить к увеличению угла атаки

Течение вблизи периферии РК1 на режиме 70 %

G = 4.8 кг/с

«-» против вращения РК

Течение вблизи периферии РК1 на режиме 70 %

IUMEC

Гладкая ПЧ, предсрывная точка (G = 4.85 кг/с)

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

- URANS: Моделирование проводится для полного оборота, либо при кратном количестве лопаток во всех венцах и пазов НРУ. Требует большого вычислительного времени для получения решения.
- Frozen Rotor: Моделирование проводится для полного оборота, либо при кратном количестве лопаток во всех венцах и пазов НРУ. Требует проведения ряда расчетов с различным положением ротора относительно статора с последующим осреднением.
- NLH: Моделирование проводится для исходного количества лопаток и пазов НРУ с включением в модель только 1 лопатки и 1 паза. Решение зависит от количества выбранных гармоник, с увеличением количества гармоник возрастают требования к оперативной памяти.

Подходы моделирования НРУ. Режим 70%

- NLH с 3 гармониками
- Frozen Rotor между РК и НРУ, Mixing Plane между венцами

	NI	LH	FR + MP		
	КПД_рт, % ΔКу, %		КПД_рт, %	ΔКу, %	
Гладкая ПЧ					
НРУ	l				
Δ ΗΡΥ	+0.04% +6.65		-0.12	+9.75%	

Ступень М-1

Количество лопаток: Стойки - 3, РК1 – 17, НА1 – 32

НРУ: кольцевая полость, которая соединяется с проточной частью через 126 пазов, наклоненных по направлению вращения на 45°. Перекрывает периферию РК1 на 30% осевой хорды

Сеточная модель с НРУ

- блочно-структурированная сетка AutoGrid5+IGG
- радиальный зазор у РК 0.5 мм
- галтели: стойка 5 мм, РК и НА 3 мм
- горячая геометрия РК на каждом режиме
- ~ 4.7 млн узлов
- y⁺ < 1

<u>Постановка</u>

- Numeca Fine/Turbo v. 15.1
- термически-совершенный газ
- NLH MR1 3 гармоники
- модель турбулентности SST
- вход: P₀ = 1 атм, T₀ = 288.15 К, V_z/|V| = 1
- выход: варьирование Р или G

- на низких частотах численная модель может быть достаточно устойчивой даже в области срыва
- определение границы проводится на базе коэффициента восстановления статического давления в венцах: границей считается точка, в которой оба венца находятся в срыве

$$C_p = \frac{P_2 - P_1}{P_t - P_1}$$

в случае ротора в знаменателе относительный динамический напор

Идентификация результатов ступени без НРУ

Подходы моделирования НРУ. Изолированное РК

- для изолированного РК с НРУ применялись следующие подходы: URANS (хар-ка недосчитана), NLH, Frozen Rotor
- количество РК и пазов НРУ скорректировано с целью обеспечения периодичности для URANS и Frozen Rotor: 16 РК и 128 НРУ
- NLH сектор с 1 лопаткой РК и пазом НРУ, URANS и Frozen Rotor сектор с 1 лопаткой РК и 8 пазами НРУ

NLH		URANS		FR		Гладкая ПЧ	
КПД_рт, %	ΔКу, %	КПД_рт, %	ΔКу, %	КПД_рт, %	ΔКу, %	КПД_рт, %	ΔΚγ, %
89.8	44.26	90.2	35.73	89.99	44.7	90.45	35.05

Web: numeca.ru

E mail: contact@numeca.ru

20

Подходы моделирования НРУ. РК, G = 8.5 кг/с

URANS

Frozen Rotor

NLH 3h

Время вычислений точки с G=8.5 кг/с

2 процессора Intel Xeon Platinum 8268 47 ядер Распараллеливание Intel IMPI(ICC15)

Frozen Rotor 1 положение	NLH 3h	URANS
1 час 10 мин	7 часов	2 недели

Идентификация ступени с НРУ. Влияние НРУ

	и = 200 м/с		u = 250 м/с		u = 300 m/c	
	КПД_рт, %	ΔКу, %	КПД_рт, %	ΔΚγ, %	КПД_рт, %	ΔКу, %
Гладкая ПЧ	87.1	20.3	87.4	23.7	88.7	18.9
НРУ	87.0	34.3	87.9	31.4	89.2	28.8
Δ НРУ	-0.1	+14.0	+0.5	+7.7	+0.5	+9.9

Phone: +7 (812) 702 5249

Web: numeca.ru

E mail: contact@numeca.ru

Влияние НРУ. u = 200 м/с, G = 8.5 кг/с

Влияние НРУ. u = 250 м/с, G =10 кг/с

Влияние НРУ. u = 300 м/с, G =13 кг/с

Первая ступень КНД

Венцы: РВНА, РК, НА НРУ: кольцевая полость, которая соединяется с проточной частью через 126 пазов, наклоненных по направлению вращения. Перекрывает периферию РК1 на 30% осевой хорды

Сектор НРУ

Сеточная модель с НРУ

- блочно-структурированная сетка AutoGrid5+IGG
- радиальный зазор у РК
- ~ 6.4 млн узлов
- y⁺ < 1

<u>Постановка</u>

- Numeca Fine/Turbo v. 12.1
- термически-совершенный газ
- NLH Basic 3 гармоники
- модель турбулентности SST
- вход: P₀ = 1 атм, T₀ = 288.15 К, V_z/|V| = 1
- выход: варьирование Р или G

G, кг/с

	N = 70%		N = 85%		N = 95%	
	КПД_рт, % 🛛 🛛 🗛 🕹 🕹 Ку, %		КПД_рт, % ΔКу, %		КПД_рт, %	ΔКу, %
Гладкая ПЧ						
НРУ						
Δ	0.0	+6.0%	+0.8	+1.8	-1.0	-1.9

NUMECA Россия

Web: numeca.ru

η

Влияние НРУ на 70% (G=70 кг/с)

- Разработаны математические модели для расчета 3х осевых компрессоров с учетом НРУ :
 - исследовано влияние положения PC на интегральные характеристики: оптимальным является положение «в НРУ»
 - NLH подтвердил свою эффективность при решении задач с HPУ в сравнении с URANS и Frozen Rotor
- Показана эффективность работы НРУ на различных частотах работы компрессоров: увеличение запасов ГДУ может достигать 14% (ступень М-1)

СПАСИБО ЗА ВНИМАНИЕ!