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Hyperbolic Systems of Conservation Laws
u + fu), =0 (1)
o Aerospace branch
o Nuclear branch
o Hydrodynamics of opened channel
o Film flows

o Problems of elasticity and plasticity
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Monotone Finite-Difference Schemes
Exact solution of Cauchy problem for the linear transport equation
ur+ug, =0, u(z,0)=v(z) = ulx,0)=v(-—1t) (2)

Definition 1 (Godunov)

Ezplicit two-layer in time finite-difference scheme
n+1 Z Ckuj+k (3)

approzimating equation (2) is monotone if it turns every monotonic on j
function u? to monotonic on j function u”+1 with the same sign of
monotomczty

Theorem 1 (Godunov) Explicit two-layer in time finite-difference scheme is
monotone if and only if
>0 Vk (4)

Godunov S.K. A difference Method for Numerical Calculation of Discontinuous Solutions
of the Equations of Hydrodynamics, Mat. Sb. 1959

18.09.2018 3/23



Godunov’s taboo

There are no monotone finite-difference schemes
(with smooth numerical flux functions)
higher than the first order of approximation

Godunov S.K. A difference Method for Numerical Calculation of Discontinuous Solutions
of the Equations of Hydrodynamics, Mat. Sb. 1959.
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Godunov’s taboo

There are no monotone finite-difference schemes
(with smooth numerical flux functions)
higher than the first order of approximation

Godunov S.K. A difference Method for Numerical Calculation of Discontinuous Solutions
of the Equations of Hydrodynamics, Mat. Sb. 1959.

Attempts to overcome Godunov’s taboo

NFC-like schemes (Nonlinear Flux Correction)

Goldin, Kalitkin, Shitova, 1965.

FCT, Boris, Book, 1975.

Kolgan, 1978.

MUSCL, Van Leer, 1979.

TVD schemes, Harten, 1983.

ENO schemes, Harten, Osher, 1987.

NED schemes, Tadmor, 1990.

WENO schemes, Liu, Osher, Chan, 1994; Jiang, Shu, 1996.
CABARET schemes, Samarskii, Goloviznin, Karabasov, 1998, 2005.

18.09.2018 4/23



Real Accuracy of NFC-schemes

@ Ostapenko V.V. On convergence of difference schemes behind of
nonstationary shock, Comp. Maths Math. Phys. 1997.

@ Casper J., Carpenter M.N. Computational consideration for the
simulation of shock-induced sound, SIAM J. Sci. Comput. 1998.

@ Engquist B., Sjogreen B. The convergence rate of finite difference
schemes in the presence of shocks, SIAM J. Numer. Anal. 1998.

@ Kovyrkina O.A., Ostapenko V.V. On the convergence of
shock-capturing difference schemes, Dokl. Math. 2010.

@ Kovyrkina O.A., Ostapenko V.V. On the practical accuracy of
shock-capturing schemes, Math. Models. Comput. Simul. 2014.

© Kovyrkina O.A., Kudryavtsev A.N., Ostapenko V.V. On real
accuracy of WENO schemes at shock capturing calculations,
International conference «AMCA — 2014», Novosibirsk, Russia.

@ Mikhailov N.A. The convergence order of WENO schemes behind
a shock front, Math. Models. Comput. Simul. 2015.
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Finite-Difference Schemes of “High Accuracy”

TVD scheme of formal second order (Harten, 1983)

N

1. Ostapenko V.V. On convergence of difference schemes behind of nonstationary shock,

Comp. Maths Math. Phys. 1997.
2. Casper J., Carpenter M.N. Computational consideration for the simulation of
shock-induced sound, STAM J. Sci. Comput. 1998.
3. Engquist B., Sjogreen B. The convergence rate of finite difference schemes in the
nresence of shocks. STAM I Numer Anal 1098
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Runge Method for Experimental Determination
of Schemes Convergence

vi(z,t) — u(z,t) = CAF +o(AF) (5)
u — exact solution,
v; — numerical solution,
k — order of convergence.

Calculations are held on the sequence of three embedded grids

with the space steps

NAo=A, Ar=A2, Ay=AJ4

(5Ui,i+1 =v; — Vi1, 1=0,1 (6)

|6’UO71| Ak—Ak 1 k |(5 12|
|5,012| = A%—A% = a = k 1 g1/2 |5 (7)
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Why so long time was it widely spread a misconception
that NFC schemes conserve high order of convergence in

all smooth parts of calculated weak solutions?

1. In majority of papers due to the construction of high order
shock capturing schemes the scheme accuracy have tested as
resolution of Riemann problem in which arise only stationary
shocks with a constant solution behind them.

h, m
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Why so long time was it widely spread a misconception
that NFC schemes conserve high order of convergence in
all smooth parts of calculated weak solutions?

t

2. For scalar conservation law it is absent
transmitted characteristics field and the
domain of shock influence coincide with B
the shock front. i -

] %t Orders of
Shock profile convergence

-

L ,
>

Uy

o

Nonstationary shock for nonlinear transport equation u; + (u®/2), =0
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e-Rankine-Hugoniot Conditions at the Shocks

J z(t)+e
Du —~ f(w)l. + 5 / wdz =0 (8)
z(t)—e
F(t)]e = F(tax(t) — o) — F(t2(t) +e) (9)

Theorem 2.

If difference scheme has smooth difference fluxes then its
approximation order of e-Rankine-Hugoniot conditions agree with
its classical approximation order on smooth solutions.

In NFC schemes difference fluxes are defined by virtue of different minimax
procedures and as a result all this fluxes are not smooth enough. So NFC type
schemes approximate e-Rankine-Hugoniot conditions (8) with the order not
higher then the first.

Ostapenko V.V. On finite-difference approximation of Hugoniot conditions on shock whish
propagate with variable velocity, Comput. Math. Math. Phys. 1998.
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Definition of Integral Convergence

Let’s set the number a € IR and define the integrals

b a

Ut z) = / wlt,y)dy, V(o) = / vi(t, y)dy

x x

Definition 2.

The sequence of difference solutions v;(t,x) converges on the interval
[z,a] C R with the Rth order (0 < R < 2), to the exact solution u(t,x), if

‘/ia(tvx) - Ua(ta .’E) = CA? +o (Aﬁ) )

where the vector function C is independent of A;.

A=A, A=AJ2 Ay=AJ4

Vi1 =V = Vi, =C(AF - Af), i=0,L
0Vio| _ Aﬁ—Ag A S T
Voa|  AF—AR T \2 8172 |5V 4

Kovyrkina O.A., Ostapenko V.V. On the convergence of shock-capturing difference
schemes, Dokl. Math. 2010.
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Periodic Initial Value Problem for Shallow Water
Equations

@+ (qu+gh?/2), =0
. 2rx w ! "
u(z,0) = Bsin > + 1 (11) 50 30
2 15 15
Ao, = (200
9 ) Ow 2 6 70 X %0 2 6 10X
_ 1 o 2mT T 15 15
=1 (Bsm(X +4>+9> (12)
X=6=10, 8=2. initial values
The initial values of the invariants
wy(z,0) = —0 = const, wsy(z,0) = 2u(x,0)+0 (13)
w); =u—2c wr=u+2 c=1+/gh (14)

Kovyrkina O. A., Ostapenko V. V. On the practical accuracy of shock-capturing
schemes, Math. Model. Comput. Simul. 2014.
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Comparison of “Exact” and Numerical Solutions

calculations on the spatial interval [iX,(i+1)X] at ¢=0, A=0.2

Rusanov V.V. Difference schemes of third
order accuracy for the through calculation of
discontinuous solutions, Dokl. Akad. Nauk
SSSR. 1968.

1=0.5

0 2 4 6 8 10 X
Jiang G.S., Shu C.W, Efficient

implementation of weighted ENO schemes,
J. Comput. Phys. 1996.
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Integral Orders of Convergence, ¢t =1

Nonmonotonic schemes
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space step A = 0.004, every 50th grid node is shown

Kovyrkina O.A., Kudryavtsev A.N., Ostapenko V.V. On real accuracy of WENO
schemes at shock capturing calculations, International conference «<AMCA — 201/», Russia.
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Why are Nonmonotonic Schemes with Higher Order
Transfer the Rankine-Hugoniot Conditions through
the Shock?

The oscillations arising on shock wave fronts in classical
nonmonotonic schemes of high accuracy keep information
about Fourier wave structure of the expansion of a discontinuous
function in the vicinity of a strong discontinuity, which allows to
these schemes with high accuracy transfer Rankine-Hugoniot
conditions through the smeared shock wave fronts and maintain
increased accuracy in the regions of shock wave influence.

At the same time NFC schemes, by smoothing these oscillations,
lose this information, which leads to a decrease in their accuracy
in the transfer of Rankine-Hugoniot conditions.
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Alternative in the Theory of Finite-Difference
Schemes

Is it not possible

to localize a shock wave front with higher accuracy
and, at the same time,
maintain an increased order of convergence
in the domain of influence

of the shock wave?
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Combined Finite-Difference Schemes

S:{(xjatn): JI]:.]A,OSJSN, tn+1:tn+7-n7 tOZO}
S’rrrllz{(xjytn)]n_m§]§]7L+m+1, |u;2+1—u;”n|:mjax|u?+1—u?| ZpA}

The number p determines the beginning of the

£ i formation of a numerical shock wave.
To eliminate oscillations in the region S}, we
reconstruct the difference solution u} by replacing it
to the monotonic solution v} obtained as a result of
numerical calculation in this region by the internal
scheme of the initial-boundary value problem for
system (1). The initial and boundary conditions for
€ * this inner problem are taken from the difference

solution u? obtained by a basic scheme.

n { uy, (zj,t,) € S\Sp,

Vil (zy,tn) €Sy,

p=1 m=6

18.09.2018 17 /23



Examples of Combined Schemes

Basic nonmonotonic v explicit Rusanov scheme [1];

3th order scheme: v implicit compact scheme [2]
Int 1 toni
;1 t}?r::der?(s):}?efr?el-c modification of the CABARET scheme [3]
hi+q: =0
g+ (qu+ gh*/2), =0
Initial-boundary value problem Cauchy problem (10)—(12)
h(0,z) =2 — %arctgar u(r,0) = Bsin (MTI %)
4(0.2) =0, q(t,0) = at h(z,0) = (u(,0) +0)° /(49)
a=4g/7 X=0=10, g =2.

1. Rusanov V.V. Difference schemes of third order accuracy for the through calculation of

discontinuous solutions, Dokl. Akad. Nauk SSSR. 1968.

2. Ostapenko V.V. Construction of high-order accurate shock-capturing finite-difference

schemes for unsteady shock waves, Comput. Maths. Math. Phys. 2000.

3. Karabasov S.A., Goloviznin V.M. Compact Accurately Boundary Adjusting

high-REsolution Technique for Fluid Dynamics, J. Comput. Phys. 2009

4. Kovyrkina O.A., Ostapenko V.V. On the construction of combined finite-difference

schemes of high accuracy, Dokl. Math. 2018.

5. Zyuzina N.A., Kovyrkina O.A., Ostapenko V.V. Monotone finite-difference scheme

that preserves the high accuracy in the regions of shock influence, Dokl. Math. (in print)
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Calculations by combined scheme

—‘exact
O Rus
« combine

initial-boundary value problem
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Integral Orders for Cauchy Problem

‘exact’
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h: A = 0.1, every grid node is shown

orders: A = 0.005, every 20th grid node is shown
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Relative Errors of Evaluation of Riemann
Invariants at ¢t =1
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space step A = 0.004, every 50th grid node is shown
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Conclusion

o The method is proposed for constructing combined
shock-capturing finite-difference schemes, which with high
accuracy capture the shocks and simultaneously maintain
an increased convergence order in all domains of smoothness
of the calculated weak solutions.

e The concrete combined schemes are considered, where
nonmonotonic third-order scheme (Rusanov or compact) is
used as the basic scheme, and as the inner one is a monotone
CABARET scheme of the second order of accuracy for smooth
solutions.

o We presented the test calculations that demonstrate
the advantages of the new schemes.

18.09.2018 22 /23



CITACUBO
3A BHUMAHUE!



