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Hyperbolic Systems of Conservation Laws

ut + f (u)x = 0 (1)

Aerospace branch

Nuclear branch

Hydrodynamics of opened channel

Film �ows

Problems of elasticity and plasticity
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Monotone Finite-Di�erence Schemes

Exact solution of Cauchy problem for the linear transport equation

ut + ux = 0, u(x, 0) = v(x) ⇒ u(x, 0) = v(x− t) (2)

De�nition 1 (Godunov)

Explicit two-layer in time �nite-di�erence scheme

un+1
j =

∑
k

cku
n
j+k (3)

approximating equation (2) is monotone if it turns every monotonic on j
function unj to monotonic on j function un+1

j with the same sign of

monotonicity.

Theorem 1 (Godunov) Explicit two-layer in time �nite-di�erence scheme is
monotone if and only if

ck ≥ 0 ∀k (4)

Godunov S.K. A di�erence Method for Numerical Calculation of Discontinuous Solutions
of the Equations of Hydrodynamics, Mat. Sb. 1959
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Godunov's taboo

There are no monotone �nite-di�erence schemes
(with smooth numerical �ux functions)

higher than the �rst order of approximation

Godunov S.K. A di�erence Method for Numerical Calculation of Discontinuous Solutions

of the Equations of Hydrodynamics, Mat. Sb. 1959.

Attempts to overcome Godunov's taboo

NFC-like schemes (Nonlinear Flux Ñorrection)

Goldin, Kalitkin, Shitova, 1965.

FCT, Boris, Book, 1975.

Kolgan, 1978.

MUSCL, Van Leer, 1979.

TVD schemes, Harten, 1983.

ENO schemes, Harten, Osher, 1987.

NED schemes, Tadmor, 1990.

WENO schemes, Liu, Osher, Chan, 1994; Jiang, Shu, 1996.

CABARET schemes, Samarskii, Goloviznin, Karabasov, 1998, 2005.
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Real Accuracy of NFC-schemes

1 Ostapenko V.V. On convergence of di�erence schemes behind of
nonstationary shock, Comp. Maths Math. Phys. 1997.

2 Casper J., Carpenter M.N. Computational consideration for the
simulation of shock-induced sound, SIAM J. Sci. Comput. 1998.

3 Engquist B., Sjogreen B. The convergence rate of �nite di�erence
schemes in the presence of shocks, SIAM J. Numer. Anal. 1998.

4 Kovyrkina O.A., Ostapenko V.V. On the convergence of
shock-capturing di�erence schemes, Dokl. Math. 2010.

5 Kovyrkina O.A., Ostapenko V.V. On the practical accuracy of
shock-capturing schemes, Math. Models. Comput. Simul. 2014.

6 Kovyrkina O.A., Kudryavtsev A.N., Ostapenko V.V. On real
accuracy of WENO schemes at shock capturing calculations,
International conference ¾AMCA � 2014¿, Novosibirsk, Russia.

7 Mikhailov N.A. The convergence order of WENO schemes behind
a shock front, Math. Models. Comput. Simul. 2015.
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Finite-Di�erence Schemes of �High Accuracy�

TVD scheme of formal second order (Harten, 1983)

First order scheme with arti�cial viscosity (Ostapenko, 1987)

1. Ostapenko V.V. On convergence of di�erence schemes behind of nonstationary shock,
Comp. Maths Math. Phys. 1997.
2. Casper J., Carpenter M.N. Computational consideration for the simulation of
shock-induced sound, SIAM J. Sci. Comput. 1998.
3. Engquist B., Sjogreen B. The convergence rate of �nite di�erence schemes in the
presence of shocks, SIAM J. Numer. Anal. 1998.
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Runge Method for Experimental Determination

of Schemes Convergence

vi(x, t)− u(x, t) = C∆k
i + o(∆k

i ) (5)

u � exact solution,
vi � numerical solution,
k � order of convergence.

Calculations are held on the sequence of three embedded grids
with the space steps

∆0 = ∆, ∆1 = ∆/2, ∆2 = ∆/4

δvi,i+1 = vi − vi+1, i = 0, 1 (6)

|δv0,1|
|δv1,2|

=
∆k

1 −∆k
2

∆k
0 −∆k

1

=

(
1

2

)k

⇒ k = log1/2

|δv1,2|
|δv0,1|

(7)
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Why so long time was it widely spread a misconception

that NFC schemes conserve high order of convergence in

all smooth parts of calculated weak solutions?

1. In majority of papers due to the construction of high order
shock capturing schemes the scheme accuracy have tested as
resolution of Riemann problem in which arise only stationary
shocks with a constant solution behind them.

Dam break problem
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Why so long time was it widely spread a misconception

that NFC schemes conserve high order of convergence in

all smooth parts of calculated weak solutions?

2. For scalar conservation law it is absent
transmitted characteristics �eld and the
domain of shock in�uence coincide with
the shock front.

Nonstationary shock for nonlinear transport equation ut + (u2/2)x = 0
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ε-Rankine-Hugoniot Conditions at the Shocks

[Du− f(u)]ε +
d

dt

x(t)+ε∫
x(t)−ε

u dx = 0 (8)

[f(t, x)]ε = f(t, x(t)− ε)− f(t, x(t) + ε) (9)

Theorem 2.

If di�erence scheme has smooth di�erence �uxes then its
approximation order of ε-Rankine-Hugoniot conditions agree with
its classical approximation order on smooth solutions.

In NFC schemes di�erence �uxes are de�ned by virtue of di�erent minimax
procedures and as a result all this �uxes are not smooth enough. So NFC type
schemes approximate ε-Rankine-Hugoniot conditions (8) with the order not
higher then the �rst.

Ostapenko V.V. On �nite-di�erence approximation of Hugoniot conditions on shock whish
propagate with variable velocity, Comput. Math. Math. Phys. 1998.
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De�nition of Integral Convergence

Let's set the number a ∈ IR and de�ne the integrals

Ua(t, x) =

b∫
x

u(t, y)dy, V a
i (t, x) =

a∫
x

vi(t, y)dy

De�nition 2.

The sequence of di�erence solutions vi(t, x) converges on the interval

[x, a] ⊂ IR with the Rth order (0 < R ≤ 2), to the exact solution u(t, x), if

V a
i (t, x)−Ua(t, x) = C∆R

i + o
(
∆R
i

)
,

where the vector function C is independent of ∆i.

∆0 = ∆, ∆1 = ∆/2, ∆2 = ∆/4

δVi,i+1 = V a
i − V a

i+1 = C(∆R
i −∆R

i+1), i = 0, 1.

|δV1,2|
|δV0,1|

=
∆R

1 −∆R
2

∆R
0 −∆R

1

=

(
1

2

)R
⇒ R = log1/2

|δV1,2|
|δV0,1|

Kovyrkina O.A., Ostapenko V.V. On the convergence of shock-capturing di�erence
schemes, Dokl. Math. 2010.
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Periodic Initial Value Problem for Shallow Water

Equations {
ht + qx = 0
qt + (qu+ gh2/2)x = 0

(10)

u(x, 0) = β sin

(
2πx

X
+
π

4

)
(11)

h(x, 0) =
(u(x, 0) + θ)2

4g
=

=
1

4g

(
β sin

(
2πx

X
+
π

4

)
+ θ

)2

(12)

X = θ = 10, β = 2. initial values

The initial values of the invariants

w1(x, 0) = −θ = const, w2(x, 0) = 2u(x, 0) + θ (13)

w1 = u− 2c, w2 = u+ 2c, c =
√
gh (14)

Kovyrkina O. A., Ostapenko V. V. On the practical accuracy of shock-capturing
schemes, Math. Model. Comput. Simul. 2014.
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Comparison of �Exact� and Numerical Solutions

calculations on the spatial interval [iX, (i+ 1)X] at i = 0, ∆ = 0.2

Rusanov V.V. Di�erence schemes of third
order accuracy for the through calculation of
discontinuous solutions, Dokl. Akad. Nauk
SSSR. 1968.

Jiang G.S., Shu C.W. E�cient
implementation of weighted ENO schemes,
J. Comput. Phys. 1996.
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Integral Orders of Convergence, t = 1

Nonmonotonic schemes NFC schemes

space step ∆ = 0.004, every 50th grid node is shown

Kovyrkina O.A., Kudryavtsev A.N., Ostapenko V.V. On real accuracy of WENO
schemes at shock capturing calculations, International conference ¾AMCA � 2014¿, Russia.
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Why are Nonmonotonic Schemes with Higher Order

Transfer the Rankine-Hugoniot Conditions through

the Shock?

The oscillations arising on shock wave fronts in classical
nonmonotonic schemes of high accuracy keep information

about Fourier wave structure of the expansion of a discontinuous
function in the vicinity of a strong discontinuity, which allows to
these schemes with high accuracy transfer Rankine-Hugoniot
conditions through the smeared shock wave fronts and maintain
increased accuracy in the regions of shock wave in�uence.
At the same time NFC schemes, by smoothing these oscillations,
lose this information, which leads to a decrease in their accuracy
in the transfer of Rankine-Hugoniot conditions.
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Alternative in the Theory of Finite-Di�erence

Schemes

Is it not possible

to localize a shock wave front with higher accuracy

and, at the same time,

maintain an increased order of convergence

in the domain of in�uence

of the shock wave?
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Combined Finite-Di�erence Schemes

S = {(xj , tn) : xj = j∆, 0 ≤ j ≤ N ; tn+1 = tn + τn, t0 = 0}

Sn
m =

{
(xj , tn) : jn −m ≤ j ≤ jn +m+ 1,

∣∣un
jn+1 − un

jn

∣∣ = max
j

∣∣un
j+1 − un

j

∣∣ ≥ p∆

}
The number p determines the beginning of the
formation of a numerical shock wave.
To eliminate oscillations in the region Snm we
reconstruct the di�erence solution unj by replacing it
to the monotonic solution vnj obtained as a result of
numerical calculation in this region by the internal
scheme of the initial-boundary value problem for
system (1). The initial and boundary conditions for
this inner problem are taken from the di�erence
solution unj obtained by a basic scheme.

wn
j =

{
unj , (xj , tn) ∈ S\Snm
vnj , (xj , tn) ∈ Snm

p = 1, m = 6
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Examples of Combined Schemes

Basic nonmonotonic

3th order scheme:
X explicit Rusanov scheme [1];
X implicit compact scheme [2]

Internal monotonic

2th order scheme:
modi�cation of the CABARET scheme [3]{

ht + qx = 0
qt + (qu+ gh2/2)x = 0

Initial-boundary value problem

h(0, x) = 2− 2
π arctg x

q(0, x) = 0, q(t, 0) = αt

α = 4g/π

Cauchy problem (10)�(12)

u(x, 0) = β sin
(

2πx
X + π

4

)
h(x, 0) = (u(x, 0) + θ)

2
/(4g)

X = θ = 10, β = 2.
1. Rusanov V.V. Di�erence schemes of third order accuracy for the through calculation of
discontinuous solutions, Dokl. Akad. Nauk SSSR. 1968.
2. Ostapenko V.V. Construction of high-order accurate shock-capturing �nite-di�erence
schemes for unsteady shock waves, Comput. Maths. Math. Phys. 2000.
3. Karabasov S.A., Goloviznin V.M. Compact Accurately Boundary Adjusting
high-REsolution Technique for Fluid Dynamics, J. Comput. Phys. 2009
4. Kovyrkina O.A., Ostapenko V.V. On the construction of combined �nite-di�erence
schemes of high accuracy, Dokl. Math. 2018.
5. Zyuzina N.A., Kovyrkina O.A., Ostapenko V.V. Monotone �nite-di�erence scheme
that preserves the high accuracy in the regions of shock in�uence, Dokl. Math. (in print)

18.09.2018 18 / 23



Calculations by combined scheme

initial-boundary value problem

Cauchy problem
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Integral Orders for Cauchy Problem

h: ∆ = 0.1, every grid node is shown
orders: ∆ = 0.005, every 20th grid node is shown
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Relative Errors of Evaluation of Riemann

Invariants at t = 1

δϕk,k+1 = ϕk − ϕk+1, δϕ =
δϕ0,1

1− |δϕ1,2|/|δϕ0,1|
⇒ δ̃ϕ∆ =

δϕ

ϕ

w1 = u− 2
√
gh w2 = u+ 2

√
gh

space step ∆ = 0.004, every 50th grid node is shown
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Conclusion

The method is proposed for constructing combined
shock-capturing �nite-di�erence schemes, which with high
accuracy capture the shocks and simultaneously maintain
an increased convergence order in all domains of smoothness
of the calculated weak solutions.

The concrete combined schemes are considered, where
nonmonotonic third-order scheme (Rusanov or compact) is
used as the basic scheme, and as the inner one is a monotone
CABARET scheme of the second order of accuracy for smooth
solutions.

We presented the test calculations that demonstrate
the advantages of the new schemes.
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