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Aeroacoustics 

• Aeroacoustics in the Automobile Industry  

 
       𝑴 ∈ [𝟎. 𝟎𝟖, 𝟎. 𝟏𝟓] 

Cavities  

A-Pillar 

Side Mirror 
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Previous Works on Flow Past Cavities I 

Publication Reynolds 

Number 

Mach 

Number 

Aspect Ratio 

(L/D) 

Dimension Acoustic 

Method 

Shieh, Chingwei, and Philip Morris. 

Parallel numerical simulation of subsonic 

cavity noise, 1999. 
5000 0.5 4 2D DS 

X Gloerfelt, C Bailly, and D Juvé. 

Direct computation of the noise radiated 

by a subsonic cavity flow 

and application of integral methods, 

2003. 

4.1 · 104 0.7 2 2D 
DS 

FW-H 

Jonas Ask and Lars Davidson. 

Sound generation and radiation of an 

open two–dimensional cavity,  2009. 
1500 0.15 4 2D 

DS 

Curle 

Huanxin Lai and Kai H Luo. A 

three-dimensional hybrid les-acoustic 

analogy method for predicting 

open-cavity noise, 2007. 

1.36 · 106 0.85 
5 

(finite,W/D=1) 
3D FW-H 

C Shieh and P Morris. Comparison of 

two-and three-dimensional turbulent 

cavity flows, 2001 

2 · 105 

 
0.6 

4,4 
(finite,W/D=1) 

 

3D DS 
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Previous Works on Flow Past Cavities II 

How acoustics is influenced 

by the three dimensional 

behaviour of the flow? 

Bres et al, 2008.  Present Case 
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Previous Works on Flow Past Cavities III 

SPL in 3D SPL in 2D 

Shieh et al, 2001.  

FINITE CAVITY:  L/D=4.4,  W/D=1 

∆ dB ≈ -35 

≈80 

≈45º 
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Previous Works on Flow Past Cavities I 
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Computational Aeroacoustics Method 

 

● Under certain conditions, integral 

methods can be reduced to a 

surface integral that can be 

computed as a post-processing. 

● Better for far field. 
 

Lighthill’s Equation 

● Directly solve Compressible 

Navier-Stokes Equations. 

● Do not include any modeling of 

the sound. 



CEEA2018  21-09-2018 

8 
Rocío Martin Noise Radiated by an Open Cavity at Low Mach Number 

Computational Aeroacoustics: Lighthill’s Analogy 

Lighthill’s Equation 

J.Lighthill, 1952.  

Curle’s Solution for Lighthill’s System * [f]≔ Evaluation of f at retarded time τ=t-r/a0 

N. Curle, 1955 

Quadrupole Source Dipole Source 

Negligible for low 

Mach number! 

x 

…three hours ago... 
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Computational Aeroacoustics: Curle’s Analogy I 

• Isentropic Fluid:  

• Spatial derivatives to time derivatives: 

 

 

• Surface does not depend on time: derivatives inside 

integral. 

• Chain rule. 

• Viscous terms neglected. 
Curle’s Modified Solution 

Curle’s Solution for Lighthill’s System 

Only pressure on 
surface needs to 
be recorded for 
post-processing!  
 

Myers et al, 1988.  
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Computational Aeroacoustics: Curle’s Analogy II 

For low Mach numbers + compact source regions 

              Incompressible simulation! 

• The replacement of the surface by  a dipole distribution makes 

the surface acoustically transparent. 

• Compact bodies do not scatter its own acoustic field, i.e., they 

are acoustically transparent. 

• Acoustical compactness is expressed by Helmholtz number: 

 
 

  

 

SW. Rienstra, 2013.  
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Problem Statement I 

Infinite in spanwise direction 
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Problem Statement II 

Width of the domain: the correlation coefficient for the velocity 

fluctuations has to tend to zero as it approaches the half-size of the domain: 
 

 

  

For W/D=4, velocity 

fluctuations uncorrelated! 
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CFD and CAA Approach 

A Gorobets, 2018. 

M Vázquez et al, 2016. 

• Compressible Simulation (DS) 

CFD simulation: solving of compressible Navier 

Stokes equations using DNS with NOISEtte code, 

developed by Keldysh Institute of the Russian 

Association of Mathematics. 

CAA simulation: acoustic pressure, p’, directly 

obtained from CFD simulation. 
 

• Incompressible Simulation (Curle’s Analogy) 

CFD simulation: solving of incompressible Navier 

Stokes equations  using DNS with Alya code, 

developed by  Barcelona  Supercomputing Center. 

CAA simulation: acoustic pressure, p’, obtained 

from Curle’s  postprocess of incompressible CFD  

simulation data. 
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Boundary Conditions 

• Inlet:  
       Blasius solution developed  

       during 5 length units 

 

 

 

 

 

 

• Outlet: Zero normal derivatives. 

           Buffer zone:  

  Compressible: last 6 length units of the domain. 

  Incompressible: 10 mesh elements of the domain (2 length 

               units approximately at plane y = 0). 

• Solid Walls: No slip boundary confitions. 

• Front and Back Walls: Periodic boundary conditions. 
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Mesh Convergence 

Case 
Number of 

Elements 

Number of 

planes 

Mean Drag 

Value 

Fundamental 

Frequency 

2D Incompressible 

9.6 ⋅ 104 1 0.419 0.061 

11.9 ⋅ 104 1 0.417 0.061 

13.6 ⋅ 104 1 0.418 0.061 

3D Incompressible 

9.8 ⋅ 104 100 0.058 0.220 

11.9 ⋅ 104 100 0.058 0.220 

18.4 ⋅ 104 100 0.059 0.220 

3D Compressible 8.7 ⋅ 104 150 0.055 0.219 

Compressible Case Incompressible Case 
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Curle’s Postprocess Implementation I 

p has to be stored every time step     

        high amount of disk space! 

• Convergence 

 

• Time Treatment 

 
    Linear interpolation for evaluation at retarded time: 

    

    Total time range: 

  

    Minimum frequency:  

     

    Sample rate:   

     

    Maximum frequency: 

    

min 
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Curle’s Postprocess Implementation II 

• Surface of Integration 

2D 

Z ∈ [−24𝐷, 24𝐷] 

∆z=0.04D 
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Curle’s Postprocess Implementation III 

• Surface of Integration 

3D 

Z ∈ [−24𝐷, 24𝐷] 

∆z=4D 

100 planes 
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Flow Field Results I 

2D 

3D 
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Flow Field Results II 

3D 

Incompressible 

Isosurfaces of                                     colored by velocity magnitude 
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Acoustic Field Results I 

[2] J. Ask & 

L.Davidson, 2009 

[1] J. Larsson &  

L. Davidson, 2003 

6 dB 

x/D y/D 

-2 7.18 

-1 7.18 

0 7.18 

1 7.18 

2 7.18 

3 7.18 

4 7.18 

5 7.18 

6 7.18 
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Acoustic Field Results II 

Correctly captured the main frequencies of the spectra! 
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Acoustic Field Results III 

2D 3D 
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Acoustic Field Results III 

2D 3D 
∆dB=-20  
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Acoustic Field Results III 

Directivity Pattern 

R=6D 

O= (2D,0D) 
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Acoustic Field Results III 

Curle DS 

∆dB=-5 

∆dB=-7 

∆dB=-2 
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Conclusions 

• Two-dimensional and three-dimensional incompressible flow results are 

significantly different for Re= 1500. 

• Due to the vortex stretching mechanism, the pressure value over the 

wall changes completely. 

• Instantaneous          shows higher frequencies for the acoustic waves. 

 

•             acoustic directivities are also in disagreement. 

• Three dimensional OASPL is about 20 dB lower than two dimensional 

OASPL. 

• Frequency spectra is in good agreement between the comparison of the 

Curle formulation with a direct acoustic simulation. 

• Highest differences in OASPL between DS and Curle occur at turbulent 

area, where volumen sources are probably not negligible. 
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