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Pitching and plunging airfoil
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Introduction

• The aerodynamic flutter and dynamic stall 
phenomena are common in aircraft and 
helicopter rotors.

• Lift enhancement and thrust generation by an 
oscillating airfoil under certain conditions 
(McCroskey 1982, Freymuth 1988).

• Flow features around an oscillating airfoil 
varies:

– At low Reynolds number (𝑅𝑒), the reversed 
von-Kármán vortex street or von-Kármán 
vortex street can be observed depending 
on oscillating frequency and amplitude    

𝑆𝑡𝐴 =
2𝜋𝑓𝐴

𝑢∞
(Triantafyllou 1993);

– Different of leading edge vortices can be 
observed under various oscillating 

frequency 𝑆𝑡𝑐 =
2𝜋𝑓𝑐

𝑢∞
(Lewin et al. 2003).   

Mi-8 - Main rotor blade move in flight

https://www.youtube.com/watch?v=FlP7zSBcbuI

BBC: Super Powered Owls

https://www.youtube.com/watch?v=FlP7zSBcbuI
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Introduction

• Leading edge noise of a rigid airfoil has 
been studied experimentally, numerically, 
and analytically.

• A noise reduction effect has been observed 
for a thicker airfoil (Paterson  and Amiet 1977).

– The larger size of the stagnation region of 
the thicker airfoil was identified as the cause 
(Gill et al. 2013);

• The effects of AoA and airfoil camber was 
found to be small on the leading edge noise 
with the isotropic turbulence (Devenport et al. 

2010, Gill et al. 2013).

• With anisotropic turbulence, The effects of 
AoA was found to be more pronounced 
(Gea-Aguilera, 2017).
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Introduction

• The leading edge noise of a heaving NACA0012 airfoil is studied.

• The mean flow solutions obtained by the Euler and the Unsteady 
Reynolds-Averaged Navier-Stokes (URANS) solvers are compared. 

• The leading noise is predicted by the LEE with the synthetic turbulence. 

• This study includes both isotropic and anisotropic turbulence.

Noise

Synthetic 

turbulence



Computation of the background mean flow
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Mean flow solver validation

• The URANS solver is firstly 
validated with the experiment of 
a pitching NACA0012 airfoil from 
Windsor 1970.

– 𝑅𝑒 = 900,000;

– 𝛼 = ത𝛼 + Δ𝛼 ⋅ sin(𝜔𝑡), where ത𝛼 =
5.8°, Δ𝛼 = 6.17°;

– 𝑆𝑡𝐴 = 0.044.

• The condition is chosen for there 
is no dynamic stall phenomenon.

• The comparisons are made at 𝛼 =
10.16∘ for upstroke and 
downstroke.
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Mean flow implementation 

• For the heaving case, the prescribed mean flow can be implemented into the 
LEE solver, under the assumption that the fluctuations will not affect the 
harmonic components in a significant way.

• Using its Fourier components, the mean flow can be well reproduced. 

Original Reconstructed
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Mean flow implementation 

• For the heaving case, the prescribed mean flow can be implemented into the 
LEE solver, under the assumption that the fluctuations will not affect the 
harmonic components in a significant way.

• Using its Fourier components, the mean flow can be well reproduced. 



Effect of mean flow viscosity
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Inviscid and viscous mean flow 

• Inviscid mean flow was used in the leading edge noise studies to avoid 
numerical instabilities (Gill 2015).

• The assumption of a inviscid mean flow is revisited for stationary and 
heaving airfoil.

• For the stationary airfoil, the 
difference is mainly at high 
reduced frequencies. 

• The difference is larger for 
lower mean flow velocity.
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Inviscid and viscous mean flow 

• For the heaving airfoil, the comparison shows that the result obtained 
from the inviscid mean flow is higher than that from viscous mean 
flow at high frequencies.

3 chords

Inviscid Viscous
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Inviscid and viscous mean flow 

Inviscid mean flow (Stationary)Inviscid mean flow (Heaving)

Viscous mean flow (Stationary)Viscous mean flow (Heaving)



Effect of turbulence anisotropy
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LEN with synthetic turbulence

• The synthesize quiescent turbulence  based on modified digital filter 

method (Gea-Aguilera et al. 2015):

– Gaussian energy spectrum;

• Mean flow velocity varies from 60m/s to 150m/s.
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• The anisotropic Gaussian spectrum is used.

• With proper scaling, the energy distribution can be unified for different 
𝑙𝑥: 𝑙𝑦 ratio.

• In this study, the 𝑙𝑥 = 0.01 is kept as a constant while 𝑙𝑦 changes.

LEN with anisotropic turbulence
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LEN with anisotropic turbulence

• Far-field directivities obtained under 
60m/s, with different 𝑙𝑥: 𝑙𝑦 ratio are 

compared under different 𝑆𝑡𝐴.

• For 𝑙𝑥: 𝑙𝑦 = 1, difference between 

stationary and heaving airfoil is small.

• For the two other cases, opposite trend 
can be observed.

↑ 𝑆𝑡𝐴

↑ 𝑆𝑡𝐴
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LEN with anisotropic turbulence

• The comparison of far-field SPL spectrum 
shows the same trends.

• The heaving motion changes the airfoil 
effective AoA continuously.

– The leading edge noise with anisotropic turbulence 
can be affected by the AoA (Gea-Aguilera et al. 
2016). 
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LEN with anisotropic turbulence

• The  equivalent  angle of attack during half heaving period can be 
calculated as:

• For 𝑆𝑡𝐴 = 0.126, the 𝛼e = 4.5∘. 

𝛼e =
0׬
𝜋
Δ𝛼 Sin 𝑡 d𝑡

𝜋
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LEN with anisotropic turbulence

• The  second equivalent  angle of attack is calculated by averaging the 
lift coefficient in the half heaving period.

– For 𝑆𝑡𝐴 = 0.126, the 𝛼e2 = 3.0∘. 

• The averaged flow field around the heaving airfoil is compared with 
that of the stationary airfoil under  𝛼e and 𝛼e2.
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LEN with anisotropic turbulence

• For 𝑙𝑥 < 𝑙𝑦, similar results are obtained from the heaving airfoil with 

𝑆𝑡𝐴 = 0.126 and the stationary airfoil with 𝛼 = 3∘.

• Similarly at 150m/s, the leading edge noise from the heaving airfoil 
under different length scale ratio agrees well with those from 
stationary airfoil with 𝛼 = 𝛼𝑒 and 𝛼 = 𝛼𝑒2.
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Summary

• The leading edge noise of a heaving NACA0012 airfoil is studied.
– With both isotropic and anisotropic turbulence;

– Under various mean flow velocity and heaving conditions;

• The inviscid mean flow assumption is revisited.
– For stationary airfoil, the effect of inviscid mean flow is small at high 𝑢∞;

– For heaving airfoil, additional noise will be generated;

• For isotropic turbulence, the effect of the heaving motion is small. 
For anisotropic turbulence,

– When 𝑙𝑥 > 𝑙𝑦, the effect can be represented by the 𝛼𝑒;

– When 𝑙𝑦 > 𝑙𝑥, the effect can be represented by the 𝛼𝑒2;



Thanks!

Any question?
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LEN with anisotropic turbulence

• It has been demonstrated by Gill 
2015 that the stagnation region 
around the airfoil has a significant 
influence on the leading edge noise 
by affecting the distortion of 𝑣′.

• For anisotropic turbulence with 
larger transverse length scale, the 
𝑣𝑡
2 > 𝑢𝑡

2 .

• The hysteresis caused by the 
heaving motion implies that the 
stagnation region of the heaving 
airfoil could be different.

• During the heaving, the maximum 
𝑐𝐿 doesn’t correspond to the 
maximum𝛼.


