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Ffowcs-Williams Hawkings Integral Equation

• Post-processing of a turbulence-resolving simulation to far-field

• Not the same as “finding physical sound source, e.g., quadrupoles”

• Almost all applications have only surface integrals

– The surface can be the solid surface, or a permeable surface that 

surrounds the turbulence, thus capturing the quadrupoles that are inside it

• The community much prefers using the solid surface!

– Partly based on Curle’s low-Mach-number theory

– Placing a permeable surface inside the “fine-grid region” is hard

– In most flows, the turbulence crosses the downstream (permeable) 

boundary, thus violating the assumptions
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This (FWH) theory is, however, a purely 

formal one and may need very careful 

interpretation in many circumstances if 

erroneous or ambiguous results are to be 

avoided (Crighton 1975)
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Principal Questions Asked Today
• Many ideas were already in my paper:

– “On the precise implications of acoustic 

analogies for aerodynamic noise at low 

Mach numbers,” JSV, 2013

• Is the solid surface sufficient, for 

Airframe Noise?

– Flaps, slats, sharp edges, landing 

gear, cavities

• Curle’s final arguments hinge on the 

device being compact

• Does the solid-surface integral allow us 

to identify the sources of sound?

– Common approach is to separate 

integrals from various parts of aircraft

• We use three model problems:

– Dipole under sphere

– Fuselage with cavity

– Fuselage with bluff body 3

When the surface is non-compact, no 

general result can be drawn from the formal 

solution to eqn. (6.6) alone (Crighton 1975)
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Solid-Surface Results for Landing Gear

• Work of W. Wolf and T. Ricciardi

– U. of Campinas, Brazil 

– Collaboration with Boeing (St. Louis)

• Calculated sound is almost the same 

for observers under the airplane, and 

above it

– Seems to be a paradox
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Curle’s Approximations: a Gentle Reminder…

• Curle correctly showed that the dipole noise satisfies
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– Therefore, the dipole approximation is of second order in M!

– Curle wrote this in 1955

• However, the reality is that
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M6 M7 M8 (compact sources)

• Neglecting the quadrupoles in the presence of dipoles is only a

first-order approximation in M

• The cross-term, O(M7), may be of either sign!

when M << 1 (df/dt on compact body)
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• The oscillating force could be from a wheel, with vortex 

shedding

• It is the “true” source of sound

• We could apply Curle’s compact-source theory to it

• Solve this in the presence of a large solid body

Model Problem 1: Dipole Under Sphere
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• Apply FWH three ways:

– Dipole only

– Dipole and sphere surface

– Permeable surface

– Near-field FWH utility courtesy of A. Duben and T. Kozubskaya

• True sound of simulation, permeable FWH, and full solid FWH all agree

– Sound of dipole alone is very wrong

Dipole Under Sphere
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Model Problem 2: Cavity Under Fuselage
• M = 0.25; diameter Re = 107

• Detached-Eddy Simulation

• What is “the sound of the 

landing-gear cavity?”

• Apply FWH three ways:

– Cavity only

– All solid surfaces

– Permeable surfaces

• Compare with true sound of 

the simulation

Permeable surface



9

Cavity Under Fuselage

• First check FWH with permeable 

surface

– Compare with true sound of simulation

– They agree

– Compare sound downward and upward

– Quite different

– Sound inside permeable surface (zero, in 

theory) is lower by 27dB or more

• Then look at solid-only FWH



Sound Calculated Inside Permeable Surface

10



11

Cavity Under Fuselage

• What is the sound of the landing-gear cavity?

• Solid-only sound

– Accurate up to St ~ 4 

– Above 4, “quadrupole effect” is strong

– Solid-FWH sound misses some of the shielding

– Trying to explain why effect is frequency-dependent…

– Cannot argue that the body is compact at this St (would mean 1 << 1)
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Compare Sound “Attributed to Cavity” and True Sound

Down Up
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Model Problem 3: Bluff Body Under Fuselage
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• Model for landing-gear component

• M = 0.25, diameter Re = 107
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Snapshot of Vorticity

• Fuselage in URANS mode, bluff body in DES
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Dipole placed under sphereFront view of mid cross-section

Meridian plane

Snapshot of dp/dt
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Nested Permeable FWH Surfaces
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DOWN: All Solid Surfaces  (Bluff Body + Fuselage)

Good agreement of solid and permeable results, except for shallow angles
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UP: All Solid Surfaces  (Bluff Body + Fuselage)

Much worse agreement: solid result is too high
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DOWN: Solid Surface, Bluff Body Only

Sound is under-predicted
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Up

Down

(bluff)

Sound Power Level

• Similar to what is observed for

Fuselage with Cavity, solid FWH 

with all walls results in:

- Underestimation of

downward noise (up to ~5 dB)

- Overestimation of upward

noise (up to ~12 dB)

• Quadrupole effect is very 

selective, and can be in either 

direction

•In some regions, solid and 

quadrupole terms essentially 

cancel each other!

(bluff)

(fuselage)

(fuselage)



The Three Terms in p’2
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• In the upwards direction, 

the cross-term nearly 

cancels the two square 

terms

– p’D and p’Q have very 

negative correlation: 

coefficient = -0.96

• In the downwards direction, 

the cross-term opposes the 

two square terms

– p’D and p’Q have mostly 

negative correlation: 

coefficient = -0.37
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Application of 3D FWH to Periodic Flow Fields
• Many airfoil simulations use periodic lateral boundary conditions

– A typical period is 1/10th of the chord

• People then apply FWH to the “slice” of surface, solid or permeable 

(gold patches)

– This uses the 3D Green’s function as if the surface surrounded the 

turbulence (on all sides)

• The two “sound fields” have nothing in common

– The pressure p’ from 3D FWH decays like 1/r

– In the real flow, p’ decays like 1/√r

• There are “corrections” for length, but many people don’t even know 

this is a violation of the FWH theory

• What is needed is a periodic 

version of FWH

– Although this would give the “true” 

sound, but not a comparison with a 

finite-span experiment

– Lockard has a 2D version, but not 

periodic
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Summary
• The FWH integral is an essential part of far-field sound calculations

– And comparisons with the simulation in the near-field are good

– Properly closing the permeable surface is delicate

• Grid convergence of turbulence-resolving simulations on complex 

geometries is not in hand

• Too many people take the “easy” solution of including only solid surfaces

– Often, “good” agreement is invoked, but standards are much too low

 “a 10dB disagreement is not so bad…”

– Quadrupoles often cannot be neglected

 Also recall the M7 scaling

 Some mild “mysteries” remain in terms of physics (the St < 4 range)

– People are even satisfied with mediocre agreement for the wall-pressure 

fluctuations (hydrodynamic) 

 I believe these should be seen on linear axes…

• Separating parts of the aircraft in the integral can be misleading

– It rapidly leads to paradoxes, often related to shielding

– There would be great technological value in identifying “dominant” source

• Future plans: varying Mach, hoping to confirm M6/M7/M8 scaling

– Write paper, if feedback here is good


