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Introduction & Motivation

• Shock wave / boundary layer interaction (SWBLI) is a complex flow 
phenomenon that is inherent in flows near various parts of transonic and 
supersonic aircraft, compressor blades and elements of air-breathing 
engine inlets. 

• An interesting unsteady phenomenon arising in SWBLI is the low 
frequency oscillations of the separation region, which occur at 
frequencies much lower – typically two orders of magnitude below –
than those that characterize the upstream boundary layer fluctuations.
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Problem formulation

Schematic of the computational domain
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Flow parameters

■ Free stream Mach number M=2.

■ The flow in the boundary layer is assumed laminar and self-similar in the 
range of coordinates 0 < x < x0. 

■ Reynolds number at x= x0:

Reδ = Uδ/ = 500, where 𝛿 = ν𝑥/𝑈

Rex = 250,000.

■ Wall temperature Tw = 1.676 Te which corresponds to the case of the 
adiabatically isolated plate at the number М = 2.

■ Boundary conditions at the inflow boundary specify the self-similar 
laminar boundary layer flow with the superimposed unsteady disturbance 
in the form of two most unstable Tollmien–Schlichting waves, which, in 
accordance with the linear stability theory, are symmetrical three-
dimensional waves propagating at equal and opposite angles ±55° to the 
main flow
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Flow parameters correspond to the experiments 

Polivanov et al. Technical Physics Letters 36, 104–107 (2010). 



Numerical approach

■ CFS3D code for solution of the compressible Navier–Stokes equations:

– WENO-5 finite difference scheme for convective fluxes

– Central 4th order approximation of the diffusive fluxes

– 4th order time-accurate Runge–Kutta algorithm for time integration

– MPI parallelization

■ Now in testing HyCFS code — hybrid supercomputer version of the CFS3D

– Nvidia CUDA for GPU parallelism

– OpenMP threads within the computing node

– MPI communications between the nodes
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Numerical approach (cont’d)

■ Boundary conditions:

– Self-similar B.L. solution at inflow

– Soft or non-reflecting boundary conditions at upper and outflow

– Spanwise periodic conditions

– Plate surface: no-slip velocity, zero-pressure gradient, fixed-temperature wall

– Sponge buffer domain near the outflow

■ Computational domain Lx = 3000 δ, Ly = 100 δ, Lz=2π/β (β is the wave 
number of the disturbance in the z direction).

■ Surface-fitted structured mesh Nx = 1024, Ny = 150, Nz = 64.   

■ Computations are run at 64 CPU cores with CFS3D.

.
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Code validation. Laminar boundary layer at M=2, Reδ0=500

Streamwise velocity

Pressure

Normal velocity
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Laminar boundary layer profiles. M=2, Reδ0=500.

Streamwise velocity Temperature

Solid curves correspond to self-similar solution
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Comparison with linear stability theory, М = 2

Spatially growing disturbance. 

Pressure fluctuations.

M=2, Reδ0=500, A=10-4
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Transition to turbulence in a flat-plate boundary layer
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Isosurfaces of streamwise velocity component

Laminar-turbulent transition 

starts at x/δ0=2645

Reδ = 1150

Rex = 1.3∙ 106
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Mean velocity profiles in several cross-sections along the plate.

Solid curves correspond to laminar basic flow.
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Skin friction coefficent distribution along the plate



Shock wave / boundary layer interaction

■ The SWBLI is initiated by the incident shock impinging on the transitional 
boundary layer from the external flow. 

■ In the experiments the incident shock wave was generated by a wedge 
located at some distance above the plate. 

■ In our computations, the incident shock is set up as a jump in the 
boundary conditions on the upper boundary of the computational 
domain. The shock wave angle is 36.2°, which corresponds to the wedge 
angle 7°. 

■ The location of the shock wave on the upper boundary of the 
computational domain is xs = 3260 which corresponds to the conditions 
just downstream the boundary layer laminar-turbulent transition point.

■ Corresponding Rex=1.5∙106, Reδ (0.99) ≈ 12000. 
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Mean flowfield visualization of the SWBLI
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Density flowfield and isobars Streamwise component of the velocity 

and selected streamlines

Xs = 3340, Xr = 3410
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Instantaneous isosurfaces of the streamwise velocity in SWBLI region
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Density distribution and limit streamlines on the plate surface

Density flowfield and selected streamlines
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Instantaneous mass flow rate flowfield in SWBLI region
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Instantaneous pressure flowfield in SWBLI region
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Pressure fluctuation history downstream of the SWBLI region

Characteristic period of pressure fluctuations is 10-12 δ0.99/U∞ . 

Maximum observed period is 30 δ0.99/U∞ corresponding to Sh=0.033.



Conclusions

■ The numerical simulation of the unsteady effects in the interaction of an 

incident shock wave with the transitional flat-plate supersonic boundary 

layer has been performed. 

■ The Mach 2 supersonic boundary layer excited by unstable disturbances in 

the form of linear stability waves undergoes laminar-turbulent transition. 

■ An incident oblique shock wave impinges on the transitional boundary 

layer thus causing boundary layer separation. 

■ Large-scale turbulence structures evolving in the transitional boundary 

layer cause significant flow oscillations in the shock wave / boundary layer 

interaction region which manifests in fluctuations of the position and shape 

of the separation and reattachment lines, and also in staggering of the 

reflected shock wave.
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Thank you 
for your attention !
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