

# A simple robust and accurate a posteriori subcell finite volume limiter for the discontinuous Galerkin method

#### **Michael Dumbser**

# ERC Grant STiMulUs FET-HPC Grant ExaHyPE









## **Objectives**

- (1) Design a new limiter for the discontinuous Galerkin finite element method that is simple, robust and accurate
- (2a) The new limiter <u>must not destroy</u> the subcell resolution capability of the DG scheme, neither at discontinuities, nor in smooth regions, where it might have been erroneously activated, or, equivalently
- (2b) The limiter must act on a characteristic **length scale** of h/(N+1) and **not** on the length scale h of the main grid, i.e. accuracy improves with N **even at shocks**
- (3) The DG limiter should **not** contain **problem-dependent parameters**, like, e.g., the well-known parameter *M* of the classical TVB limiter of Cockburn and Shu.
- (4) The new limiter should work well for **very high** polynomial degrees, say N=9.
- (5) Ideally, the final DG scheme should become **as robust** as a traditional **second order TVD finite volume scheme**, but **more accurate** on a given computational mesh of characteristic mesh size *h*





## Unlimited Fully Discrete One-Step ADER-DG Scheme

Governing hyperbolic PDE system of the form

$$\frac{\partial \mathbf{Q}}{\partial t} + \nabla \cdot \mathbf{F}(\mathbf{Q}) = 0 \tag{PDE}$$

with the vector of conserved variables  $\mathbf{Q}$  and the nonlinear flux tensor  $\mathbf{F}(\mathbf{Q})$ . The discrete solution at time  $t^n$  is represented by piecewise polynomials of degree N over spatial control volumes  $T_i$  as

$$\mathbf{u}_h(\mathbf{x}, t^n) = \sum_{l} \Phi_l(\mathbf{x}) \hat{\mathbf{u}}_l^n, \quad \mathbf{x} \in T_i$$
 (DG)

Multiplication with a test function  $\phi_k$  from the space of piecewise polynomias of degree N and integration over a space-time control volume  $T_i \times [t^n, t^{n+1}]$  yields:

$$\int_{t^n}^{t^{n+1}} \int_{T_i}^{t} \Phi_k \frac{\partial \mathbf{Q}}{\partial t} d\mathbf{x} dt + \int_{t^n}^{t^{n+1}} \int_{\partial T_i}^{t} \Phi_k \mathbf{F}(\mathbf{Q}) \cdot \mathbf{n} dS dt - \int_{t^n}^{t^{n+1}} \int_{T_i}^{t} \nabla \Phi_k \cdot \mathbf{F}(\mathbf{Q}) d\mathbf{x} dt = 0$$



## Unlimited Fully Discrete One-Step ADER-DG Scheme

We then introduce the discrete solution (DG) and an **element-local space-time predictor**  $\mathbf{q}_h(\mathbf{x},t)$ , together with a classical (monotone) numerical flux G, as it is used in Godunov-type finite volume schemes.

The fully discrete one-step ADER-DG scheme then simply reads:

$$\left(\int_{T_i} \Phi_k \Phi_l d\mathbf{x}\right) \left(\hat{\mathbf{u}}_l^{n+1} - \hat{\mathbf{u}}_l^n\right) + \int_{t^n}^{t^{n+1}} \int_{\partial T_i} \Phi_k \mathcal{G}\left(\mathbf{q}_h^-, \mathbf{q}_h^+\right) \cdot \mathbf{n} \, dS dt - \int_{t^n}^{t^{n+1}} \int_{T_i} \nabla \Phi_k \cdot \mathbf{F}(\mathbf{q}_h) d\mathbf{x} dt = 0$$

But how to compute the space-time predictor  $\mathbf{q}_h(\mathbf{x},t)$ , since at the beginning of a time step, only the discrete spatial solution  $\mathbf{u}_h(\mathbf{x},t^n)$  at time  $t^n$  is known?

Use a weak integral form of the PDE in space-time and solve an element-local Cauchy problem *in the small*, with initial data  $\mathbf{u}_h(\mathbf{x},t^n)$ , similar to the MUSCL-Hancock scheme or the ENO scheme of Harten et al.





## **Element-local Space-time Predictor**

Rewrite the governing PDE in a reference coordinate system  $\xi$ - $\tau$  on a reference element  $T_F$ :

$$\frac{\partial \mathbf{Q}}{\partial \tau} + \nabla_{\xi} \cdot \mathbf{F}^{*}(\mathbf{Q}) = 0, \qquad \mathbf{F}^{*} := \Delta t (\partial \boldsymbol{\xi} / \partial \mathbf{x})^{T} \cdot \mathbf{F}(\mathbf{Q}).$$

We introduce the two space-time integral operators

$$\langle f, g \rangle = \int_{0}^{1} \int_{T_{E}} \left( f(\boldsymbol{\xi}, \tau) \cdot g(\boldsymbol{\xi}, \tau) \right) d\boldsymbol{\xi} d\tau, \quad [f, g]^{\tau} = \int_{T_{E}} \left( f(\boldsymbol{\xi}, \tau) \cdot g(\boldsymbol{\xi}, \tau) \right) d\boldsymbol{\xi} d\tau,$$

The discrete space-time predictor solution and the discrete flux are defined as

$$\begin{aligned} \mathbf{q}_h &= \mathbf{q}_h(\boldsymbol{\xi}, \boldsymbol{\tau}) = \sum_l \theta_l(\boldsymbol{\xi}, \boldsymbol{\tau}) \hat{\mathbf{q}}_l := \theta_l \hat{\mathbf{q}}_l, & \underline{\mathbf{nodal}} \, \mathrm{space\text{-time basis}} \, \boldsymbol{\theta}_l \\ \mathbf{F}_h^* &= \mathbf{F}_h^*(\boldsymbol{\xi}, \boldsymbol{\tau}) = \sum_l \theta_l(\boldsymbol{\xi}, \boldsymbol{\tau}) \hat{\mathbf{F}}_l^* := \theta_l \hat{\mathbf{F}}_l^*, & \hat{\mathbf{F}}_l^* &= \mathbf{F}^*(\hat{\mathbf{q}}_l). \end{aligned}$$





## **Element-local Space-time Predictor**

Multiplication with a **space-time** test function and integration over the space-time reference element  $T_F \times [0,1]$  yields:

$$\left\langle \theta_k, \frac{\partial \mathbf{q}_h}{\partial \tau} \right\rangle + \left\langle \theta_k, \nabla_{\xi} \cdot \mathbf{F}_h^*(\mathbf{q}_h) \right\rangle = 0.$$

The initial condition  $\mathbf{u}_h(\mathbf{x},t^n)$  is introduced in a **weak sense** after integration by parts **in time** (upwinding in time, causality principle):

$$[\theta_k, \mathbf{q}_h]^1 - [\theta_k, \mathbf{u}_h]^0 - \left\langle \frac{\partial}{\partial \tau} \theta_k, \mathbf{q}_h \right\rangle + \left\langle \theta_k, \nabla_{\xi} \cdot \mathbf{F}_h^* \right\rangle = 0.$$

The above element-local nonlinear system is easily solved via the following fast-converging fixed-point iteration (discrete Picard iteration):

$$\left( [\theta_k, \theta_l]^1 - \left\langle \frac{\partial}{\partial \tau} \theta_k, \theta_l \right\rangle \right) \hat{\mathbf{q}}_l^{r+1} = [\theta_k, \Phi_l]^0 \hat{\mathbf{u}}_l^n - \langle \theta_k, \nabla_{\xi} \theta_l \rangle \cdot \mathbf{F}^* (\hat{\mathbf{q}}_l^r),$$





## A new a posteriori limiter of DG-FEM methods

- Motivation: develop a simple, robust and parameter-free limiter for DG that always works and which does not destroy the <u>subcell resolution</u> of DG
- Conventional DG limiters use either artificial viscosity, which needs parameters to be tuned, or nonlinear FV-type reconstruction/limiters (TVB, WENO, HWENO), which **usually destroy** the subcell resolution properties.
- Our new approach: extend the successful a posteriori MOOD method of Loubère et al., developed in the FV context, also to the DG-FEM framework.
- As very simple a posteriori detection criteria, we only use
  - A relaxed discrete maximum principle (**DMP**) in the sense of polynomials
  - Positivity of the solution and absence of floating point errors (NaN)
- If one of these criteria is violated after a time step, the scheme goes back to the old time step and recomputes the solution in the troubled cells, using a more robust ADER-WENO or TVD FV scheme on a <u>fine subgrid</u> composed of <u>2N+1</u>





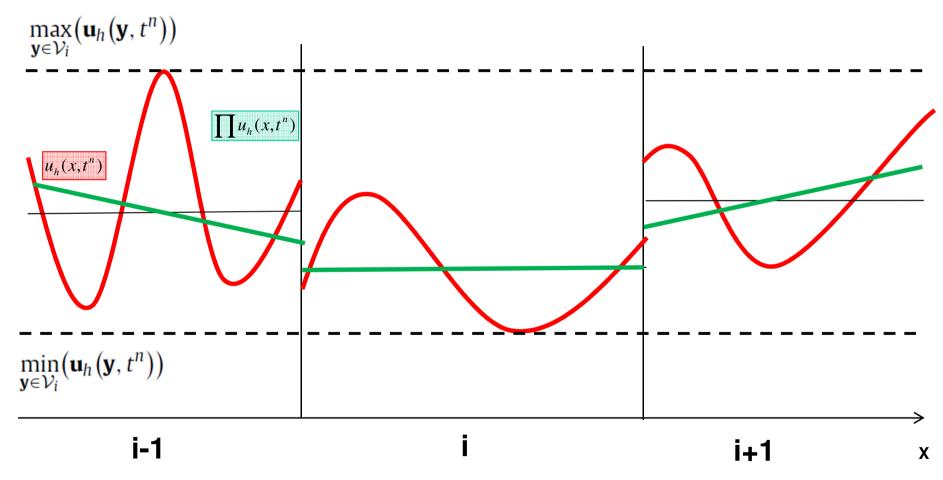
## A new a posteriori limiter of DG-FEM methods

- Classical DG limiters, like WENO/HWENO/slope/moment limiters are based on nonlinear data post-processing, while the new DG limiter recomputes the discrete solution with a more robust scheme, starting again from a valid solution available at the old time level
- Alternative description: dynamic, element-local checkpointing and restarting of the solver with a more robust scheme on a finer grid
- This enables the limiter even to **cure** floating point errors (**NaN** values appearing after division by zero or after taking roots of negative numbers)
- The new method is by construction positivity preserving, if the underlying finite volume scheme on the subgrid preserves positivity
- Local limiter (in contrast to WENO limiters for DG), since it requires only information from the cell and its direct neighborhood
- As accurate as a high order unlimited DG scheme in smooth flow regions, but at the same time as robust as a second order TVD scheme at shocks or other discontinuities, but also at strong rarefactions





## Classical TVB slope/moment limiting of DG

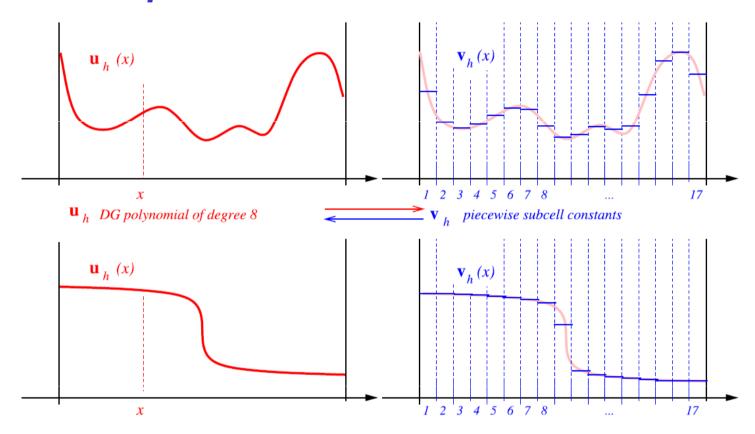


If a classical nonlinear reconstruction-based DG limiter is activated erroneously, there may be important physical information that is lost forever!





## A new a posteriori limiter of DG-FEM methods



DG polynomials of degree N=8 (left) and **equivalent** data representation on 2N+1=17 **subcells** (right). Arrows indicate projection (red) and reconstruction (blue)

$$\mathcal{R} \circ \mathcal{P} = \mathcal{I}$$

We use 2N+1 subcells to **match** the DG time step (CFL<1/(2N+1)) on the coarse grid with the FV time step (CFL<1) on the fine subgrid.





## A new a posteriori limiter of DG-FEM methods

Projection from the DG polynomials to the subcell averages

$$\mathbf{v}_{i,j}^n = \frac{1}{|S_{i,j}|} \int_{S_{i,j}} \mathbf{u}_h(\mathbf{x}, t^n) d\mathbf{x} = \frac{1}{|S_{i,j}|} \int_{S_{i,j}} \phi_l(\mathbf{x}) d\mathbf{x} \, \hat{\mathbf{u}}_l^n, \quad \forall S_{i,j} \in \mathcal{S}_i.$$

Reconstruction of DG polynomials from the subcell averages

$$\int_{S_{i,j}} \mathbf{u}_h(\mathbf{x}, t^n) d\mathbf{x} = \int_{S_{i,j}} \mathbf{v}_h(\mathbf{x}, t^n) d\mathbf{x}, \quad \forall S_{i,j} \in \mathcal{S}_i.$$

$$\int_{T_i} \mathbf{u}_h(\mathbf{x}, t^n) d\mathbf{x} = \int_{T_i} \mathbf{v}_h(\mathbf{x}, t^n) d\mathbf{x}.$$
 Linear constraint: conservation

Overdetermined system, solved by a constrained LSQ algorithm.



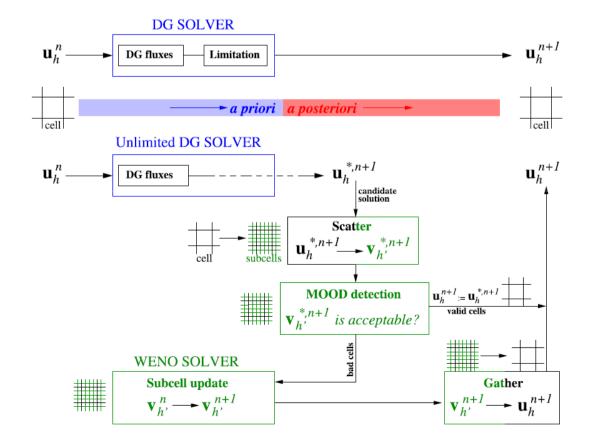


## A posteriori detection criteria and DG-MOOD flowchart

**Positivity:**  $\pi_k(\mathbf{u}_h^*(\mathbf{x},t^{n+1})) > 0$ 

#### Relaxed DMP in the sense of polynomials:

$$\min_{\mathbf{y}\in\mathcal{V}_i}(\mathbf{u}_h(\mathbf{y},t^n)) - \delta \leq \mathbf{u}_h^*(\mathbf{x},t^{n+1}) \leq \max_{\mathbf{y}\in\mathcal{V}_i}(\mathbf{u}_h(\mathbf{y},t^n)) + \delta,$$

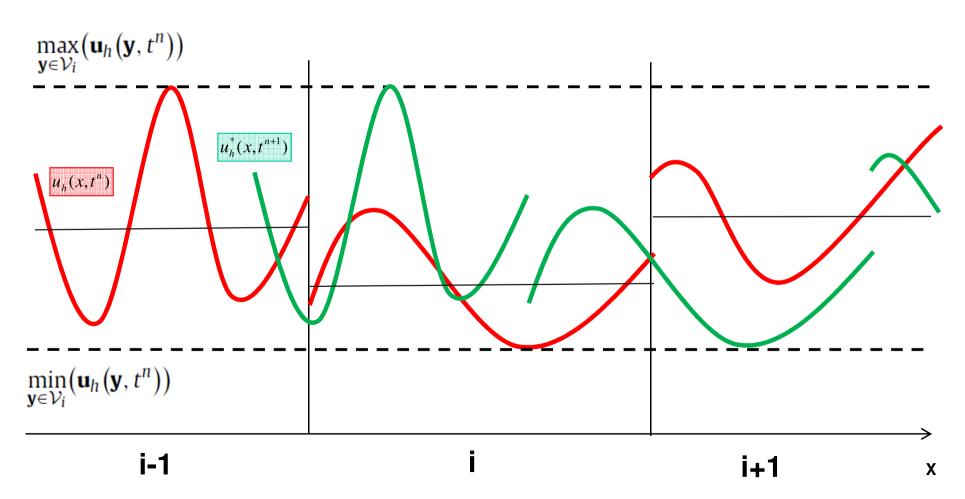






## **DMP** in the sense of polynomials

$$\min_{\mathbf{y}\in\mathcal{V}_i} (\mathbf{u}_h(\mathbf{y},t^n)) - \delta \leq \mathbf{u}_h^*(\mathbf{x},t^{n+1}) \leq \max_{\mathbf{y}\in\mathcal{V}_i} (\mathbf{u}_h(\mathbf{y},t^n)) + \delta,$$







## **Summary of the ADER-DG-MOOD scheme**

Verification of the DMP and the positivity on the candidate solution  $u_h^*(x,t^{n+1})$ :

$$\min_{\mathbf{y}\in\mathcal{V}_i}(\mathbf{v}_h(\mathbf{y},t^n)) - \delta \leq \mathbf{v}_h^*(\mathbf{x},t^{n+1}) \leq \max_{\mathbf{y}\in\mathcal{V}_i}(\mathbf{v}_h(\mathbf{y},t^n)) + \delta, \quad \forall \mathbf{x}\in T_i,$$

$$\pi_k(\mathbf{u}_h^*(\mathbf{x},t^{n+1})) > 0, \quad \forall \mathbf{x} \in T_i, \ \forall k,$$

If a cell does not satisfy both criteria, flag it as troubled cell,  $\beta_i^{n+1} = 1$ , <u>discard</u> the DG solution and <u>recompute</u> it with a more robust third order **ADER-WENO** or an even more robust **second order TVD finite** volume scheme on the **fine subgrid**:

$$\mathbf{v}_h(\mathbf{x},t^{n+1}) = \mathcal{A}(\mathbf{v}_h(\mathbf{x},t^n))$$

$$\mathbf{v}_h(\mathbf{x},t^n) = \begin{cases} \mathcal{P}(\mathbf{u}_h(\mathbf{x},t^n)) & \text{if} \quad \beta_j^n = 0, \\ \mathcal{H}(\mathbf{v}_h(\mathbf{x},t^{n-1})) & \text{if} \quad \beta_j^n = 1. \end{cases} \quad \mathbf{x} \in T_j \quad \forall T_j \in \mathcal{V}_i.$$

Finally, reconstruct the DG polynomial from the subcell averages:

$$\mathbf{u}_h(\mathbf{x}, t^{n+1}) = \mathcal{R}(\mathbf{v}_h(\mathbf{x}, t^{n+1}))$$
 or  $\mathbf{u}_h(\mathbf{x}, t^{n+1}) = \mathcal{R}(\mathcal{R}(\mathbf{v}_h(\mathbf{x}, t^n)))$ 



#### Università degli Studi di Trento Laboratory of Applied Mathematics

# A posteriori subcell finite volume limiting of the Discontinuous Galerkin method

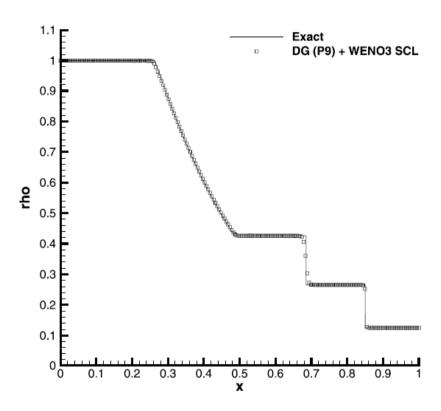
## 2D Numerical Convergence Results P2-P9 (Euler)

|                          |         |             |             |                    |             |             | •                  | <b>—</b> |
|--------------------------|---------|-------------|-------------|--------------------|-------------|-------------|--------------------|----------|
|                          | $N_{x}$ | $L^1$ error | $L^2$ error | $L^{\infty}$ error | $L^1$ order | $L^2$ order | $L^{\infty}$ order | Theor.   |
| $DG\text{-}\mathbb{P}_2$ | 25      | 9.33E-03    | 2.07E-03    | 2.02E-03           | _           | _           | _                  | 3        |
|                          | 50      | 6.70E-04    | 1.58E-04    | 1.66E-04           | 3.80        | 3.71        | 3.60               |          |
|                          | 75      | 1.67E-04    | 4.07E-05    | 4.45E-05           | 3.43        | 3.35        | 3.25               |          |
|                          | 100     | 6.74E-05    | 1.64E-05    | 1.82E-05           | 3.15        | 3.15        | 3.10               |          |
| $DG-\mathbb{P}_3$        | 25      | 5.77E-04    | 9.42E-05    | 7.84E-05           | _           | _           | _                  | 4        |
|                          | 50      | 2.75E-05    | 4.52E-06    | 4.09E-06           | 4.39        | 4.38        | 4.26               |          |
|                          | 75      | 4.36E-06    | 7.89E-07    | 7.55E-07           | 4.55        | 4.30        | 4.17               |          |
|                          | 100     | 1.21E-06    | 2.37E-07    | 2.38E-07           | 4.46        | 4.17        | 4.01               |          |
| $DG-\mathbb{P}_4$        | 20      | 1.54E-04    | 2.18E-05    | 2.20E-05           | _           | _           | _                  | 5        |
| •                        | 30      | 1.79E-05    | 2.46E-06    | 2.13E-06           | 5.32        | 5.37        | 5.75               |          |
|                          | 40      | 3.79E-06    | 5.35E-07    | 5.18E-07           | 5.39        | 5.31        | 4.92               |          |
|                          | 50      | 1.11E-06    | 1.61E-07    | 1.46E-07           | 5.50        | 5.39        | 5.69               |          |
| DG- $\mathbb{P}_5$       | 10      | 9.72E-04    | 1.59E-04    | 2.00E-04           | _           | _           | _                  | 6        |
|                          | 20      | 1.56E-05    | 2.13E-06    | 2.14E-06           | 5.96        | 6.22        | 6.55               |          |
|                          | 30      | 1.14E-06    | 1.64E-07    | 1.91E-07           | 6.45        | 6.33        | 5.96               |          |
|                          | 40      | 2.17E-07    | 2.97E-08    | 3.59E-08           | 5.77        | 5.93        | 5.82               |          |
| $DG-\mathbb{P}_6$        | 5       | 2.24E-02    | 4.15E-03    | 3.11E-03           | _           | _           | _                  | 7        |
|                          | 10      | 1.76E-04    | 2.75E-05    | 2.86E-05           | 6.99        | 7.24        | 6.76               |          |
|                          | 20      | 1.67E-06    | 2.28E-07    | 2.26E-07           | 6.72        | 6.91        | 6.98               |          |
|                          | 25      | 3.60E-07    | 4.96E-08    | 6.27E-08           | 6.86        | 6.84        | 5.74               |          |
| $DG-\mathbb{P}_7$        | 5       | 5.50E-03    | 1.22E-03    | 1.46E-03           | _           | _           | _                  | 8        |
|                          | 10      | 4.63E-05    | 6.26E-06    | 6.95E - 06         | 6.89        | 7.61        | 7.71               |          |
|                          | 15      | 1.62E-06    | 2.20E-07    | 2.29E-07           | 8.28        | 8.26        | 8.42               |          |
|                          | 20      | 2.05E-07    | 2.80E-08    | 2.28E-08           | 7.18        | 7.17        | 8.01               |          |
| DG- $\mathbb{P}_8$       | 4       | 9.11E-03    | 1.80E-03    | 3.44E-03           | _           | _           | -                  | 9        |
|                          | 8       | 4.97E-05    | 7.51E-06    | 6.93E-06           | 7.52        | 7.90        | 8.96               |          |
|                          | 10      | 7.50E-06    | 1.05E-06    | 1.18E-06           | 8.47        | 8.81        | 7.95               |          |
|                          | 15      | 2.40E-07    | 3.34E-08    | 3.09E-08           | 8.49        | 8.51        | 8.98               |          |
| DG- $\mathbb{P}_9$       | 4       | 3.95E-03    | 7.89E-04    | 1.42E-03           | _           | _           | -                  | 10       |
| ımb                      | 8       | 1.01E-05    | 1.44E-06    | 1.52E-06           | 8.61        | 9.09        | 9.87               |          |
| / <b>30</b>              | 10      | 1.44E-06    | 2.00E-07    | 2.27E-07           | 8.74        | 8.85        | 8.51               |          |
| -                        | 12      | 2.67E-07    | 3.70E-08    | 3.77E-08           | 9.26        | 9.25        | 9.85               |          |

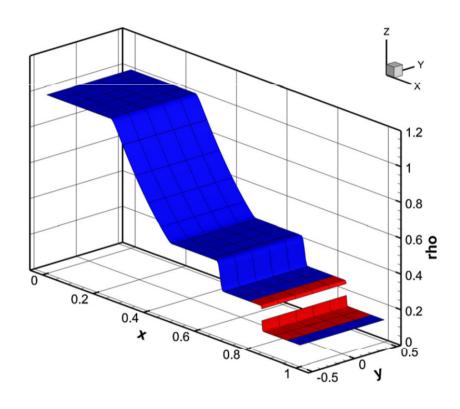




#### **ADER-DG-MOOD Results**



Sod shock tube, 20x5 elements (N=9)

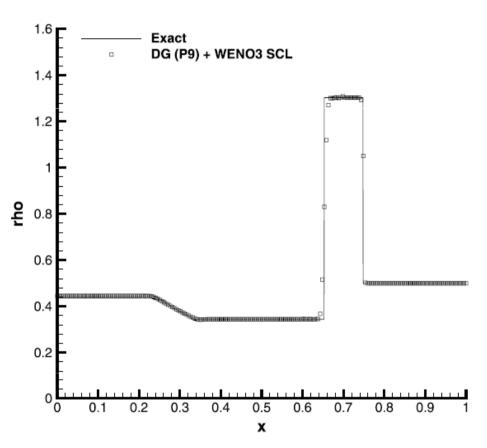


Limited cells (red), Unlimited cells (blue)

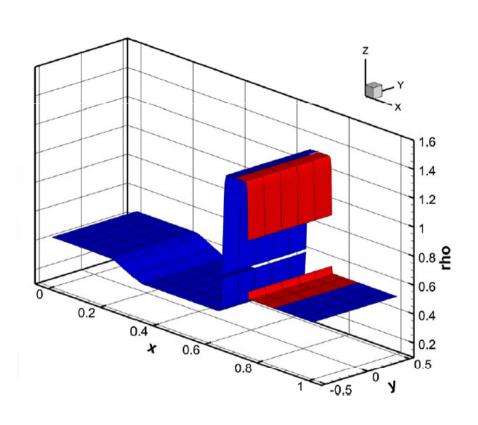




#### **ADER-DG-MOOD Results**



Lax shock tube, 20x5 elements (N=9)

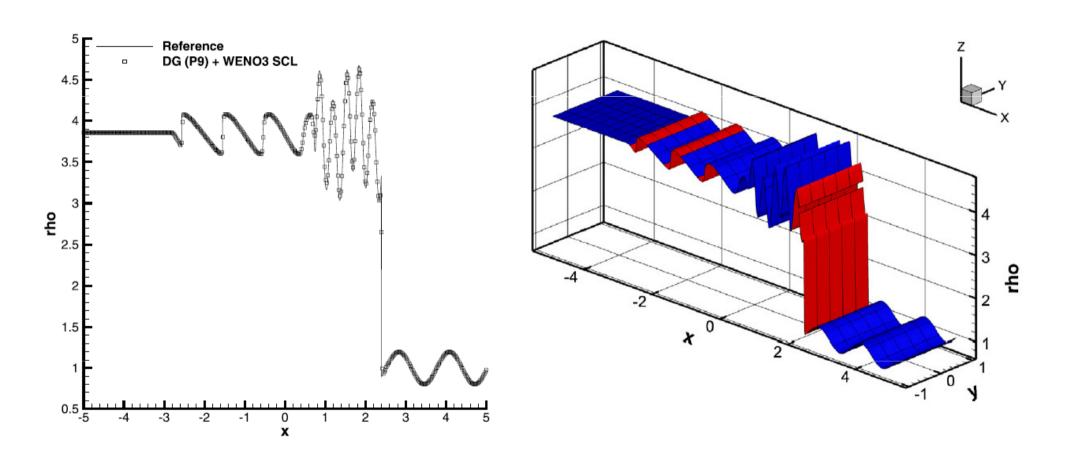


Limited cells (red), Unlimited cells (blue)





#### **ADER-DG-MOOD Results**

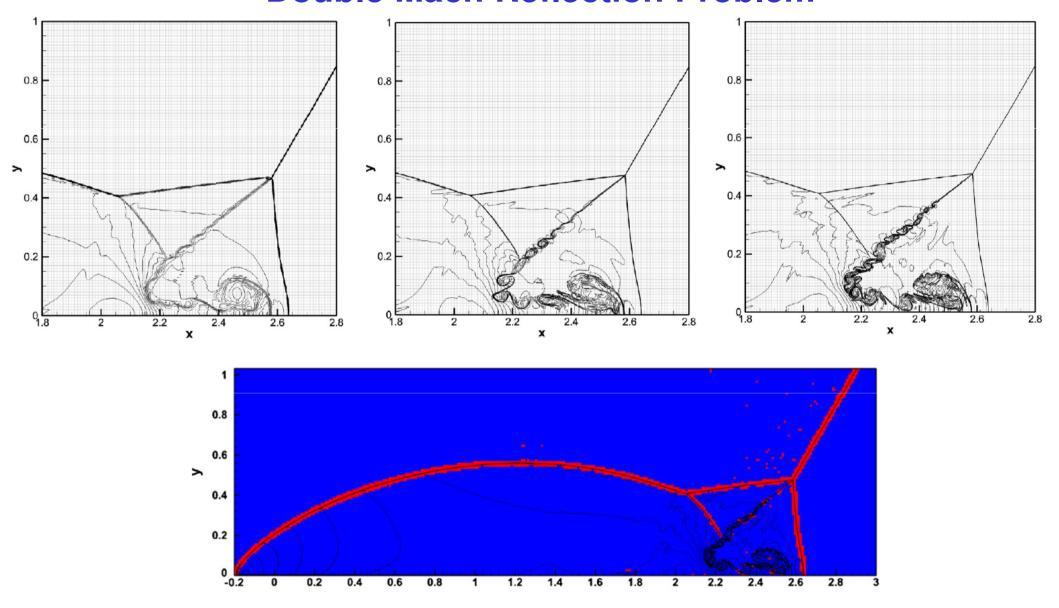


Shock-density interaction problem of Shu & Osher 40x5 cells (N=9). Unlimited cells (blue) and limited cells (red)





#### **Double Mach Reflection Problem**

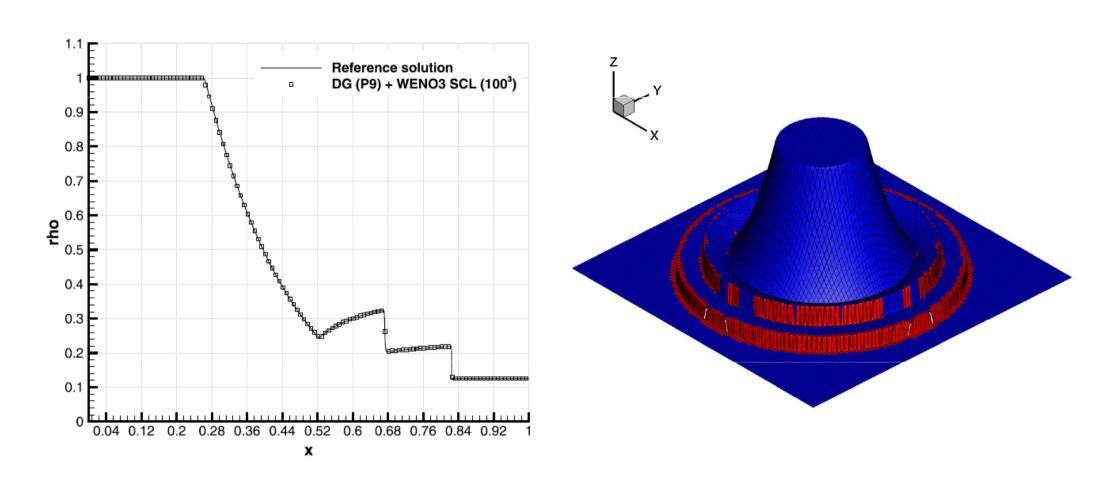


300x100 cells (N=2, 5, 9). Unlimited cells (blue) and limited cells (red)





## **3D Spherical Explosion Problem**

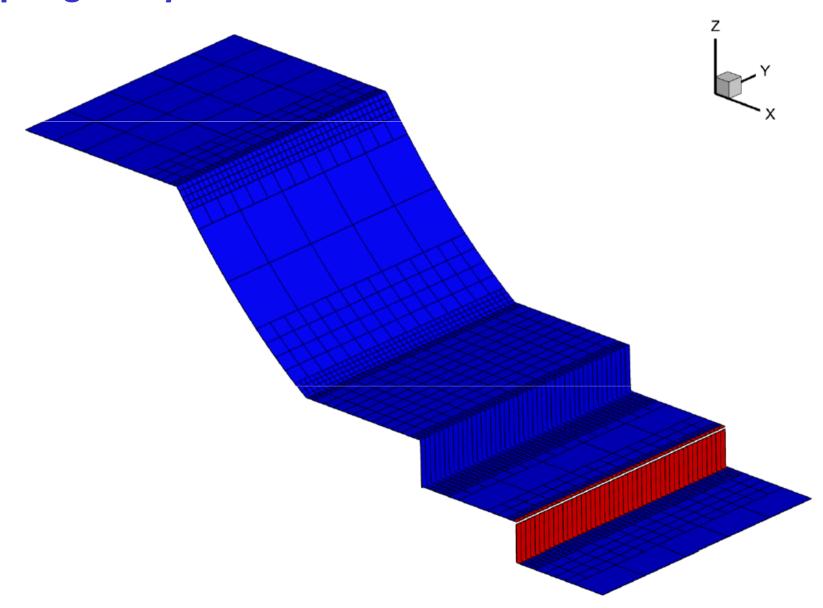


100<sup>3</sup> cells (N=9), corresponding to 10 billion space-time degrees of freedom per time step. Unlimited cells (blue) and limited cells (red)





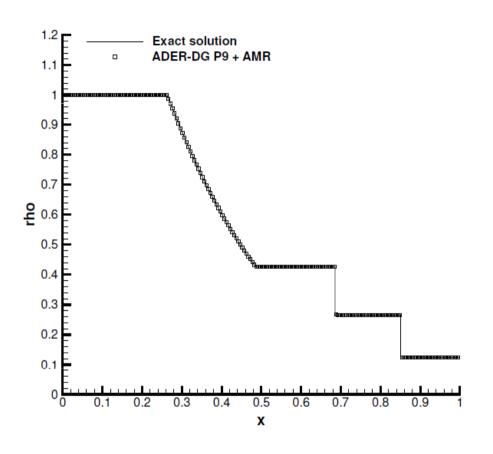
## Coupling of a posteriori subcell limiters for DG with AMR

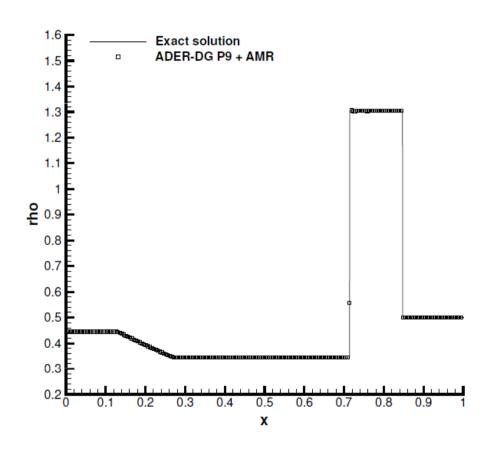






## Coupling of AMR with a posteriori subcell limiters for DG



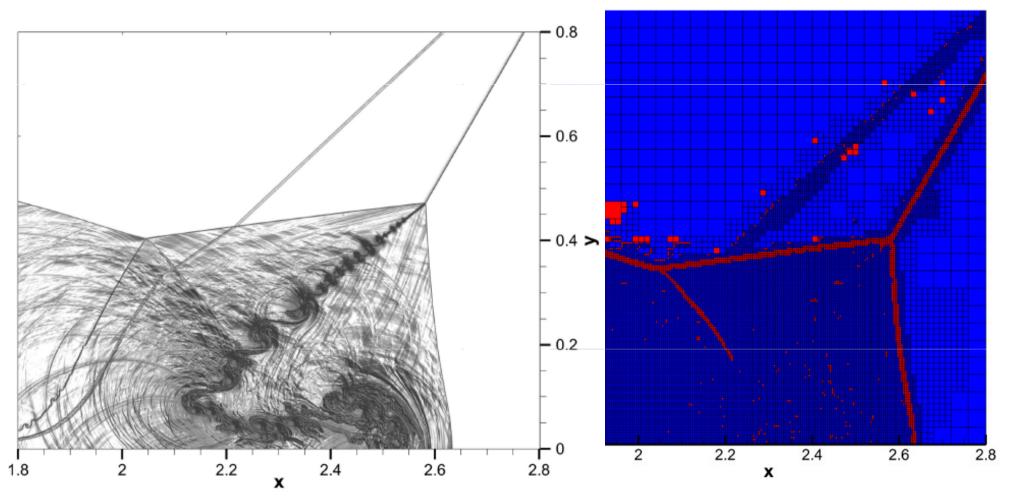


ADER-DG (N=9) with a posteriori ADER-WENO subcell limiter and space-time adaptive mesh refinement (AMR) yields an <u>unprecedented resolution</u> of shocks and contact waves.





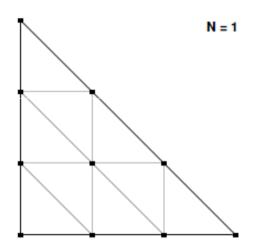
## Coupling of AMR with a posteriori subcell limiters for DG

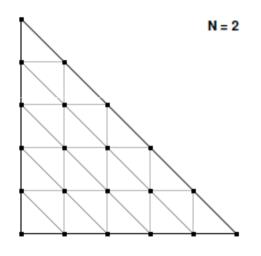


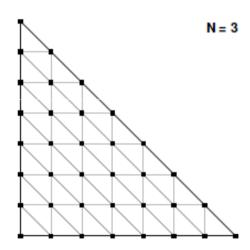
Double Mach reflection problem using ADER-DG (N=9) with a posteriori ADER-WENO subcell limiter and space-time adaptive mesh refinement (AMR)

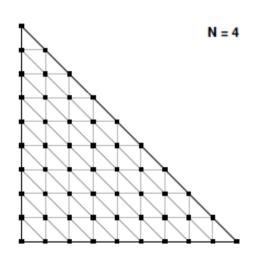


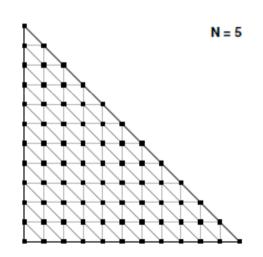


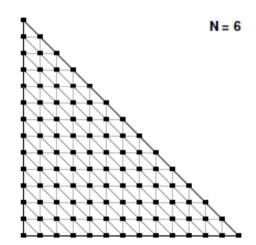






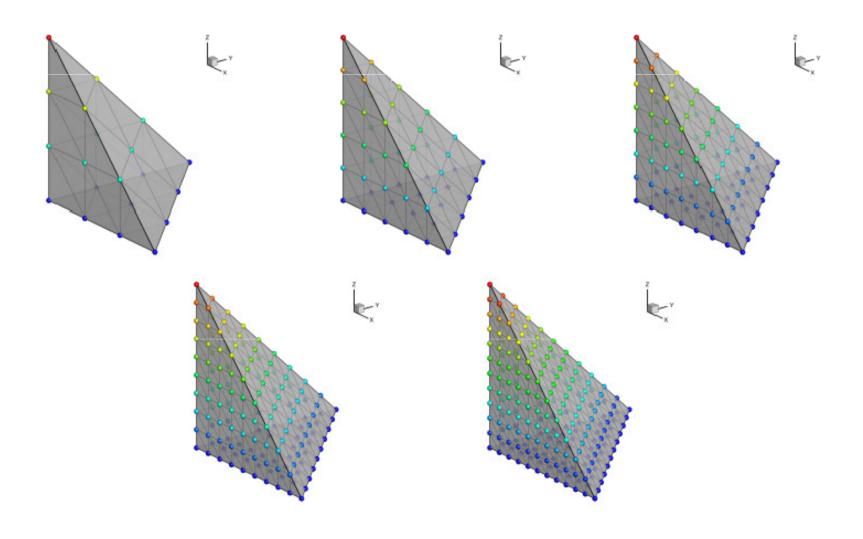






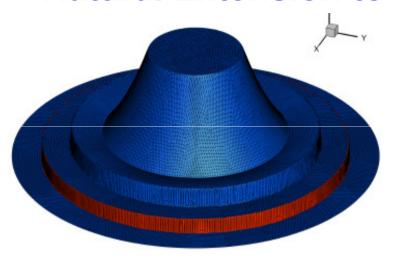


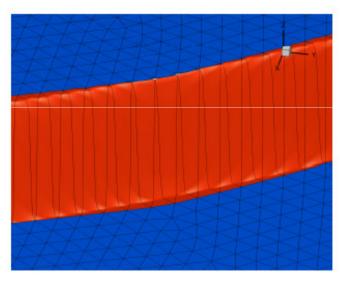


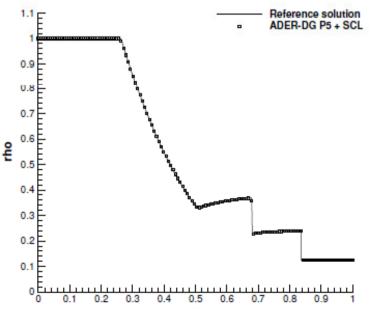


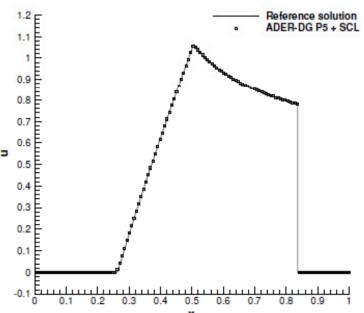










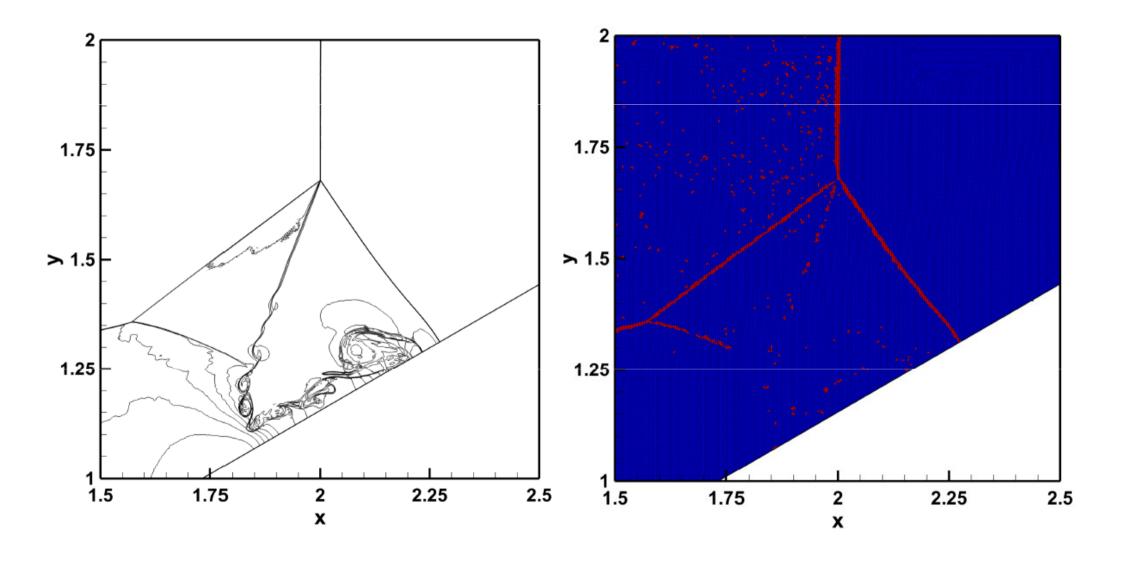


M. Dumbser 26 / 30

Circular explosion problem in 2D (N=5)

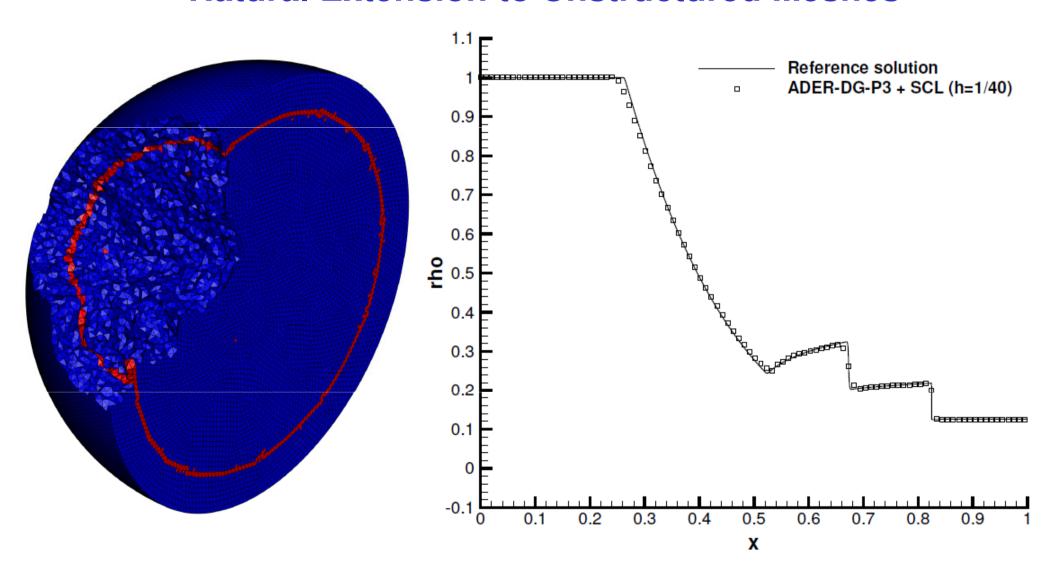






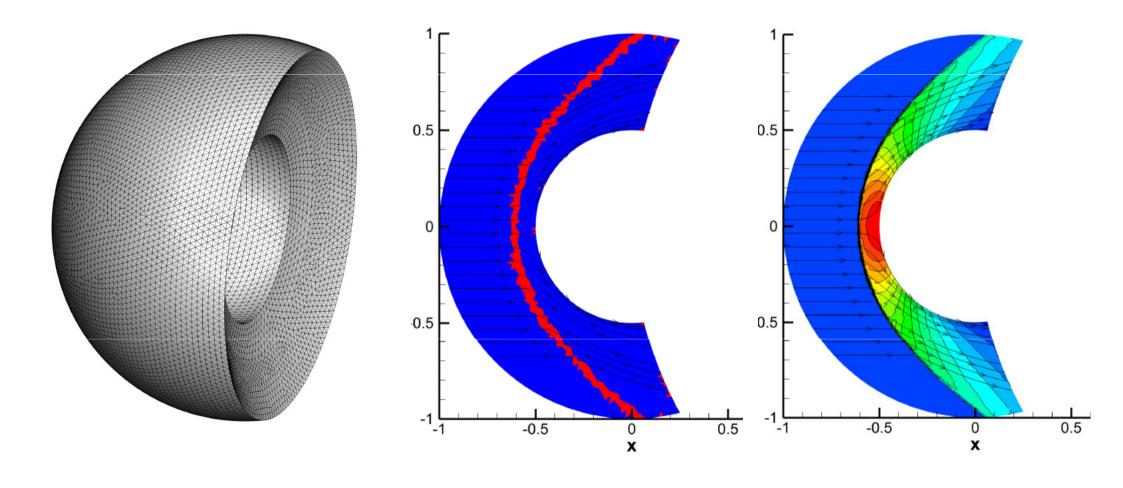
















#### **Conclusions**

- New, simple robust and accurate a posteriori subcell finite volume limiter for the discontinuous Galerkin finite element method
- High order fully discrete one-step ADER time discretization
- Available for uniform and space-time adaptive (AMR) Cartesian grids as well as for general triangular and tetrahedral unstructured meshes
- The a posteriori MOOD framework of Loubère, Clain and Diot has been found to be an ideal framework to devise a simple and robust limiter for DG schemes
- Why a posteriori: It is much simpler to **observe** (and cure) the occurrence of a troubled cell rather than to **predict** (and avoid) its occurrence from given data.
- Element-local <u>checkpointing</u> and solver <u>restarting</u> is even able to <u>cure</u> floating point errors (NaN, e.g. after division by zero)
- Future extension: <u>Lagrangian-type DG schemes</u> on unstructured ALE meshes