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1. ANISOTROPIC MESH ADAPTATION

Riemannian metric space: (M(x))x∈Ω

Distance:

Distance(a, b) = `M(ab) =

∫ 1

0

√
tabM(a + tab) ab dt

Complexity C :

C(M) =

∫
Ω

d(x) dx =

∫
Ω

√
det(M(x)) dx.

Matrix writing:

M(x) = d
2
3 (x)R(x)

 r
−2/3
1 (x)

r
−2/3
2 (x)

r
−2/3
3 (x)

 tR(x).
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1. Anisotropic mesh adaptation: unit mesh

Main idea: change the distance evaluation in the mesh generator
[Vallet, 1992], [Casto-Diaz et Al., 1997], [Hecht et Mohammadi, 1997]

Fundamental concept: Unit mesh

Adapting a mesh

~w� Work in adequate Riemannian metric space

Generating a uniform mesh w.r. to M(x)

H unit mesh ⇐⇒ ∀e, `M(e) ≈ 1 and ∀K , |K |M ≈
{√

3/4 in 2D√
2/12 in 3D
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1. Anisotropic mesh adaptation: continuous interpolation error

For any K which is unit for M and for all u quadratic positive
form (u(x) = 1

2
tx H x):

‖u − Πhu‖L1(K) =

√
2

240
det(M−

1
2 )︸ ︷︷ ︸

mapping

trace(M−
1
2 HM−

1
2 )︸ ︷︷ ︸

anisotropic term

Continuous interpolation error:

∀x ∈ Ω , |u − πMu|(x) =
1

10
trace

(
M(x)−

1
2 |H(x)|M(x)−

1
2
)

equivalent because:

1

10
trace

(
M(x)−

1
2 |H(x)|M(x)−

1
2
)

= 2
‖u − Πhu‖L1(K)

|K |

for any K which is unit with respect to M(x).
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1. Anisotropic mesh adaptation: continuous mesh framework

We proposed a continuous mesh framework to solve this problem

Discrete Continuous

Element K Metric tensor M(xK )

Mesh H of Ωh Riemannian metric space M = (M(x))x∈Ω

Number of vertices Nv Complexity C(M) =

∫
Ω

√
det(M(x)) dx

Linear interpolate Πhu Continuous linear interpolate πMu
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1. Anisotropic mesh adaptation: multiscale adaptation

We call multi-scale adaptation the minimisation of the Lp-norm,
with p <∞, of the continuous interpolation:

Find Mopt = (Mopt(x))x∈Ω of complexity N such that

EMopt (u) = min
M
‖u − πMu‖M,Lp(Ω)

= min
M

(∫
Ω
|u(x)− πMu(x)|p dx

) 1
p

A well-posed problem solved by a calculus of variations.
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1. Anisotropic mesh adaptation: multiscale adaptation

Optimal metric

MLp = DLp (det |Hu|)
−1

2p+3 R−1
u |Λ| Ru

1 2 3 4

1 Global normalization: to reach the constraint complexity N

DLp = N
2
3

„Z
Ω

(det |Hu|)
p

2p+3

«− 2
3

and DL∞ = N
2
3

„Z
Ω

(det |Hu|)
1
2

«− 2
3

2 Local normalization: sensitivity to small solution variations,
depends on Lp norm chosen

3 Optimal anisotropy directions based on Hessian eigenvectors

4 Diagonal matrix of anisotropy strengths, defined from the
absolute values of Hessian eigenvalues
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1. Anisotropic mesh adaptation: multiscale adaptation

Fixed point algorithm

Compute flow

Compute metric field

Build new mesh

Interpolate old data on new mesh
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1. Anisotropic mesh adaptation: multiscale adaptation

Background and properties:
[Castro Diaz et al., 1997], [Habashi et al., 2000], [Frey and Alauzet, 2005], . . .

Genericity, does not depend on the PDE and on the numerical
scheme

Anisotropy easily deduced

The multiscale (i.e. Lp) version provides an optimal mesh
without neglecting weaker details.
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1. Anisotropic mesh adaptation: application

An example: supersonic steady flow around an aircraft.
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2. GOAL-ORIENTED MESH ADAPTATION

Objectif

Deriving the best mesh to observe a given functional
j(w) = (g ,w) depending of the solution w of a PDE and enough
regular to be observed through its Jacobian g .

How?

Control of the approximation error on the output functional :
j(w)− j(wh).

Exemples

vorticity in wake j(w) =

Z
γ
‖∇ ∧ (u− u∞)‖2

2 dγ

drag, lift: use to quantify the performance of a design , etc...
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2. Goal-oriented mesh adaptation: background

Background:
[Becker-Rannacher],[Giles-Pierce],[Venditti-Darmofal, 2002],[Rogé-Martin, 2008],. . .

Explicit use of the PDE

Strong dependency on the numerical scheme

Anisotropy hard to prescribe

Given a functional j(w)

We only know wh

How to control j(w)− j(wh)
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2. Goal-oriented mesh adaptation: formal derivation

Continuous and discrete equations

(Ψ(w), φ) = 0 and (Ψh(wh), φh) = 0

Continuous and discrete adjoint equations

(
∂Ψ

∂w
(w)φ,w∗) = (g , φ) and (

∂Ψh

∂w
(wh)φh,w

∗
h ) = (g , φh)

Adjoint estimation
Dual formula [Giles et Süli, 2002]

j(w)− j(wh) ≈ (g ,w − wh) = −(w∗,Ψ(wh))︸ ︷︷ ︸
A posteriori

= (w∗h ,Ψh(w))︸ ︷︷ ︸
A priori
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2. Goal-oriented mesh adaptation: formal derivation

A priori error estimation [A. Loseille and A. Dervieux and F. Alauzet, Fully

anisotropic goal-oriented mesh adaptation for 3D steady Euler equations, JCP, 2010]

j(w)− j(wh) = (g ,w − wh)︸ ︷︷ ︸
Approximation error

= (g ,w − Πhw)︸ ︷︷ ︸
Interpolation error

+ (g ,Πhw − wh)︸ ︷︷ ︸
Implicit error

=
(
(Ψh −Ψ)(w),w∗h

)
+ R3

Search for continuous model E (M) to evaluate (Ψh −Ψ)(w).

Find M that minimises
(
E (M),w∗

)
.
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2. Goal-oriented mesh adaptation: application

Application to sonic boom :

Adjoint functional :

j(W ) =

∫
γ

(
p − p∞

p∞

)2

dγ

Adaptation variable : Mach number
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2. Goal-oriented mesh adaptation: application
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2. Goal-oriented mesh adaptation: application

Even close to the aircraft (2 lengths), the adjoint-based adaptation
strongly supersedes the multiscale method.
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3. EXTENSION TO UNSTEADY FLOWS

Problematics:

Evolution of physical phenomena in time.

One may need a good prediction of solution evolution into the
whole computational domain. In this case, the unsteady
multiscale method need be applied. We refer to Alauzet et al.
JCP (2007).

A target observation can be specified: the goal oriented
version is needed.

We neglect time-discretisation errors in the present study.
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2. Extension to unsteady flows (Euler model)

(Ψ(W ),Φ) =

∫
Q

Φ ∂tW dQ +

∫
Q

Φ ∇.F(W ) dQ −
∫

Σ

Φ F̂(W ) dΣ

(Ψh(W ),Φh) =

∫
Q

Φh Πh∂tW dQ+

∫
Q

Φh∇.ΠhF(W ) dQ−
∫

Σ

ΦhΠhF̂(W ) dΣ

with Q = Ω× ]0,T [, Σ = ∂Ω× ]0,T [.

Let:
j(w) = (g ,w)Q

j(w)− j(wh) ≈
∫

Q

W ∗ (∂tWh − ∂tW +∇.Fh(W )−∇.F(W )) dQ + BT

=

∫
Q

W ∗ (∂tWh − ∂tW ) dQ +

∫
Q

∇.W ∗ (F(W )−Fh(W )) dQ + BT

=

∫
Q

W ∗ (Πh∂tW − ∂tW ) dQ +

∫
Q

∇.W ∗ (F(W )− ΠhF(W )) dQ + BT

Boundary integrals (“BT”) are tranformed in a similar manner.
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2. Extension to unsteady flows (Euler model)

Solve this problem in the continuous framework

Find Mopt = (Mopt(x))x∈Q of complexity N such that

E (Mopt) = min
M

(

∫
Q

W ∗ (πMWt −Wt) dQ +

+

∫
Q
∇.W ∗ (F(W )− πMF(W )) dQ + BT )

A calculus of variations gives

Mopt =ML1

opt

0@ 5X
i=1

(|W ∗h (Wi )| |H(Wi,t)| +
3X

j=1

|∇xj W
∗
h (Wi )| |H(Fxj (Wi ))|))

1A
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2. Extension to unsteady flows: discrete case

Discrete State System and functional:

Ψn+1
h (W n,W n+1, φn) = 0⇔W = Wsol

j = J(Wsol)

Discrete Adjoint State System writes:

W ∗,N =
( ∂ΨN

h

∂W N

)−T( ∂J

∂W N

)T

W ∗,n =
( ∂Ψn

h

∂W n

)−T [( ∂J

∂W n

)T
−
(∂Ψn+1

h

∂W n

)T
W ∗,n+1

]
∀ n = N − 1, 0

=⇒ Adjoint State is computed backwards in time.
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2. Extension to unsteady flows (Euler model)

Adjoint is advanced forward in time:

Computing W ∗,n from the adjoint state W ∗,n+1 needs the
knowledge of states W n,W n+1 .

Higher-Order scheme with intermediate storage (like explicit
Runge-Kutta schemes) demands even more
storage/recompute effort

Our approach:

Storage of the solution on checkpoints =⇒ forward/backward
computation only between two checkpoints.

Interpolate Adjoint states between two adaptation
sub-intervals.
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2. Extension to unsteady flows (Euler model)

Optimal Metric computation needs:

Adjoint state : W ∗ (computed backwards in time)

Adjoint state gradient : ∇ W ∗

Hessian of the Euler fluxes : H(F(W ))

Hessian of time derivative: H(Wt)

Continuous states ⇐= approximated by the discrete ones

Gradients and Hessians ⇐= derivative recovery (L2 -projection)
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2. Extension to unsteady flows (Euler model)

0 ∆titi ti+1 T = tnadap

ti,k

t

nadap = 5
nk = 11

Fixed-point loop j

Solve state once to get checkpoints

Solution state and adjoint state sampling

Ψ̃(W ) = 0

Ψ̃∗ (W, W ∗) = 0

HGO
i,j,k︸ ︷︷ ︸

|HGO
i,j,max|=

nkT
k=1

|HGO
i,j,k|
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4. APPLICATION TO A BLAST WAVE

Blast-like initialisation inside a circle of radius r0 = 0.15 around
x0 = (1.2, 0.0), given by: ρ = 10.0, v = (0, 0) and e = 25.0.

The cost function j was the impulse over the target surface S in
Figure below:

j(W ) =
1

2

∫
S

(p − p∞)2ds.

Figure: Channel flow 2D mesh
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4. APPLICATION TO A BLAST WAVE

Figure: Evolution of the meshes in time21 Mesh-adaptive computation of acoustics



Second Example

Nonlinear “blast” wave.
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Second Example, results
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Second Example, results
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5. APPLICATION TO ACOUSTICS

For acoustic analysis, the use of anisotropic meshes seems less
mandatory.

Uniform meshes allow a higher accuracy with lower cost per
node, but need good absorbing boundaries.

For a particular family of problems, noise emission and noise
observation (“micro”) are locallised in a small portion of the
domain and much resolution can be useless.

In that case, the goal-oriented formulation helps focalising the
mesh effort on the propagation from source to micro.
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Application to acoustics

Comparison between Goal-Oriented approach and multiscale Lp:
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Application to acoustics
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Application to 2D acoustics(2)
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6. CONCLUSION AND PERPECTIVES

Conclusion:

New mesh adaptation algorithm which prescribes the spatial
mesh of an unsteady simulation as the optimum of a
goal-oriented error analysis;

Extension to unsteadiness is applied in an implicit
mesh-solution coupling which needs a non-linear iteration, the
fixed point;

The new algorithm is applied to a blast wave test case and a
noise propagation test case and shows on these calculations
the favourable behavior expected from an adjoint-based
method (automatic selection of the mesh necessary for the
target output)
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6. CONCLUSION AND PERPECTIVES

Perpectives:

Accurate integration of time errors in the mesh adaptation
process with a more general formulation of the mesh
optimisation problem (work in progress)

Higher order adjoint schemes and 3D unsteady test-cases
(work in progress)

Application to turbulent aeroacoustics (3D Navier-Stokes
equations)
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