Numerucal Investigation of Resonators for Acoustic Liners

Alexey DUBEN

Moscow State Technological University STANKIN

Tatiana KOZUBSKAYA

M.V. Keldysh Institute of Applied Mathematics RAS

Mikhail MIRONOV

N.N.Andreev Acoustics Institute

Outline

Motivation

Scheme of Computational Experiment

In-house Code in Use

2D Numerical Results

3D Numerical Results

Conclusion

Motivation

Basic way of numerical investigation of real engine configuration with liners -

acoustics and flow simulation with **impedance boundary conditions** at the walls

impedance $Z(\omega)$ is needed

impedance is taken from the **physical experiment** (in channels)

the resulting impact of the **collectivity effect** and **basic properties of a liner cell**

What is the impact of a liner cell? Which factors influence its properties? Are there options for the optimization?

Physical Experiment

Industrial

lined channels

Academic

impedance tubes

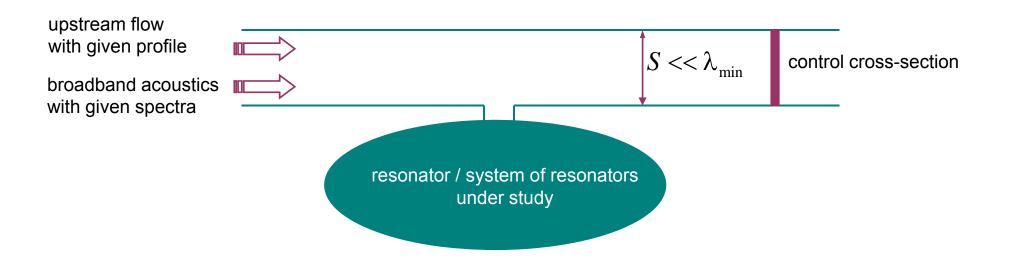
Difficult to investigate a single resonator

Impossible to investigate a resonator at real conditions (upstream flow, boundary layers, etc)

Computational experiment

in configuration "resonator/system of resonators" in a wave guide

Scheme of Computational Experiment



Basing on the incoming and outgoing data one can find the impedance of resonators under study

In-house code built on the vertex-centered edge-based methods

Mathematical Models

- Euler Equations, Navier-Stokes Equations
- Non-Linear Disturbance Equations (NLDE) different forms
- Linearized Euler Equations
- RANS with Spalart-Allmares turbulence model
- DES, DDES (are currently tested)

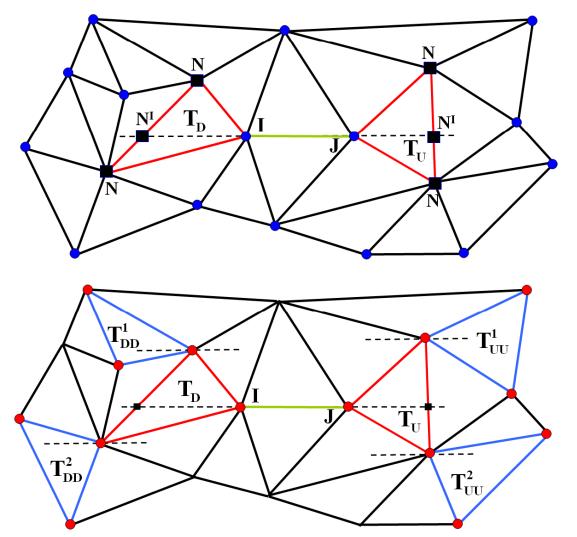
Numerical Algorithms

- Higher-accuracy multi-parameter vertex-centered edge-based schemes upto the 6th order (for structured meshes)
- Explicit 4th order Runge-Kutta method and Its linear version of arbitrary high order
- Implicit second-order time integration based on Newton linearization of equations system with block linear solvers: SOR including Gauss-Seidel, SSOR, Krylov-type (GMRES, BCG,...)
- Non-reflecting boundary conditions (flux splitting-based BC, characteristic BC, Tam radiation and outflow BC)

Parallel Implementation

- SMP Systems (OpenMP), MPP Systems (MPI), Hybrid Systems (MPI + OpenMP)
- Efficient computations using thousands of CPU

Edge-Based Higher-Accuracy Scheme for Unstructured Grids



Central gradient

$$\left(\nabla\mathbf{F}\right)^{C} = \mathbf{F}_{j} - \mathbf{F}_{i}$$
in green

Nodal gradients in nodes N

$$\left(\nabla \mathbf{F}\right)_{i} = \frac{1}{\left|C_{i}\right|} \sum_{j \in \Omega_{i}} \frac{\left|T_{j}\right|}{3} \sum_{k \in T_{j}} \mathbf{F}_{k} \nabla \varphi_{k}$$

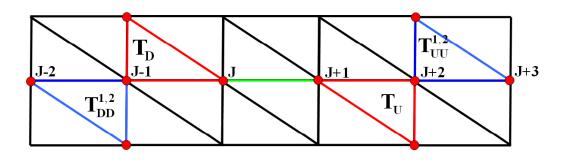
in blue - participating nodes

Gradient on a triangle

$$\nabla \mathbf{F}\big|_T = \sum_{k \in T} \mathbf{F}_k \nabla \mathbf{\varphi}_k$$

in red - first level upwinding triangles,in blue - second level upwinding triangles

Edge-Based Higher-Accuracy Scheme for Unstructured Grids



2D	1 D
$\left(\nabla \mathbf{F}\right)_{ij}^{c} \cdot \mathbf{ij} = \mathbf{F}_{j} - \mathbf{F}_{i}$	$\Delta \mathbf{F}_{j+1/2} = \mathbf{F}_{j+1} - \mathbf{F}_j$
$\nabla \mathbf{F} \big _{\mathbf{T}^{\mathbf{D}}} \cdot \mathbf{ij}$	$\Delta \mathbf{F}_{j-1/2} = \mathbf{F}_j - \mathbf{F}_{j-1}$
$\nabla \mathbf{F} \big _{\mathbf{T}^{\mathbf{U}}} \cdot \mathbf{ij}$	$\Delta \mathbf{F}_{j+3/2} = \mathbf{F}_{j+2} - \mathbf{F}_{j+1}$
$\nabla \mathbf{F} \big _{\mathbf{T}^{\mathrm{DD}}} \cdot \mathbf{ij}$	$\Delta \mathbf{F}_{j-1/2} = \mathbf{F}_j - \mathbf{F}_{j-1}$
$\nabla \mathbf{F} \big _{\mathbf{T}^{\mathrm{uv}}} \cdot \mathbf{ij}$	$\Delta \mathbf{F}_{j+5/2} = \mathbf{F}_{j+3} - \mathbf{F}_{j+2}$
$\left(abla \mathbf{F} ight)_{i}^{N}\cdot\mathbf{ij}$	$\Delta_0 \mathbf{F}_j = \mathbf{F}_{j+1} - \mathbf{F}_{j-1}$
$\left(abla \mathbf{F} ight)_{j}^{N}\cdot\mathbf{ij}$	$\Delta_0 \mathbf{F}_{j+1} = \mathbf{F}_{j+2} - \mathbf{F}_j$

Central gradient

$$(\nabla \mathbf{F})^C = \mathbf{F}_j - \mathbf{F}_i$$
in green

Nodal gradients in nodes N

$$\left(\nabla \mathbf{F}\right)_{i} = \frac{1}{\left|C_{i}\right|} \sum_{j \in \Omega_{i}} \frac{\left|T_{j}\right|}{3} \sum_{k \in T_{j}} \mathbf{F}_{k} \nabla \varphi_{k}$$

in blue – supporting nodes

Gradient on a triangle

$$\nabla \mathbf{F}\big|_T = \sum_{k \in T} \mathbf{F}_k \nabla \mathbf{\varphi}_k$$

in red - first level upwinding triangles,in blue - second level upwinding triangles

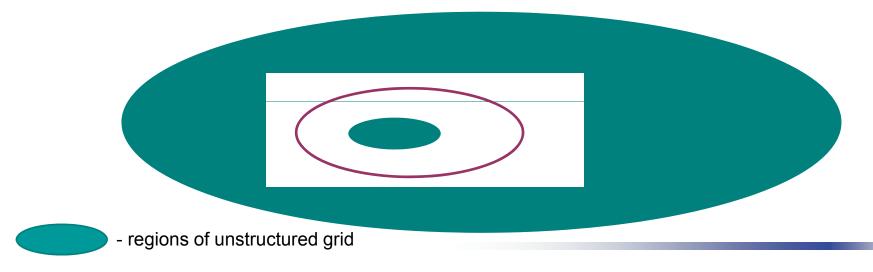
Edge-Based Higher-Accuracy Scheme for Unstructured Grids

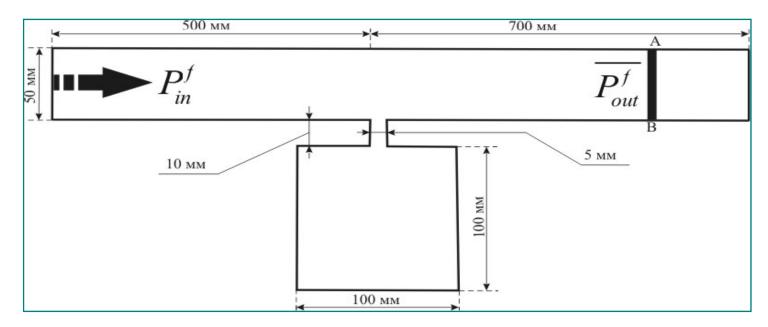
Idea – to gain the advantages of structured and unstructured grids within one algorithm

Requirements to the grid:

- to have as large "structured" subdomains as possible
- to have rather smooth interfaces between "structured" and "unstructured" regions (not well developed yet)

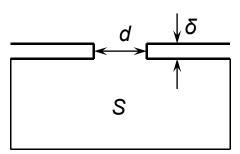
Desirable structure of the grid





Validation on Helmholtz resonator

Theoretical estimation of characteristic frequency



Oscillating mass in hole

$$m \cong \rho d \left[\delta + d \ln \left(\frac{H}{d} \right) \right]$$

Elasticity coefficient

$$\kappa = \frac{d^2}{\beta S} \left[\beta = \frac{1}{\rho c^2} \right]$$

$$\omega_0^2 \cong \frac{\kappa}{m} \cong \frac{c^2}{\left(\frac{\delta}{d} + \alpha \ln\left(\frac{H}{d}\right)\right)S}$$

$$f_0 \approx 261.7 \ Hz$$

$$\omega_0 = 2\pi f_0$$

Computational Details

In-house code NOISEtte:

- Edge-Based Scheme of the 5th order
- 4th order Runge-Kutta scheme
- boundary conditions based on Steger-Worming flux splitting

Analysis

Fast Fourier transform

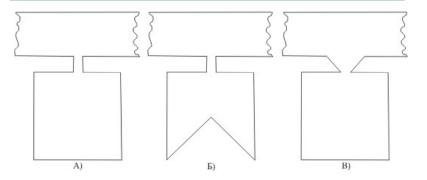
Grids

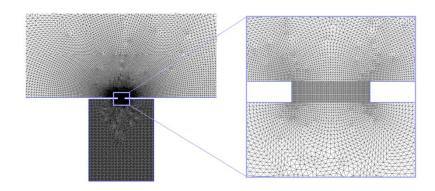
Structured in channel, unstructured in the vicinity of hole, 20K -150K nodes

Estimation of boundary layer thickness for the upstream flow

$$\delta_{\rm BL} \sim \frac{1}{\sqrt{{\rm Re}(D_{channel})}}$$

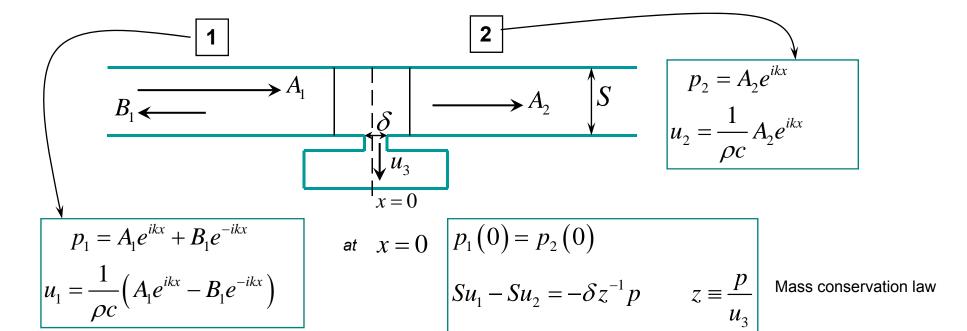
3 configuration of resonators under study





Incoming acoustic radiation
Uniformly distributed broadband noise

How to Calculate Impedance



Reflection and transmission coefficients for harmonics k

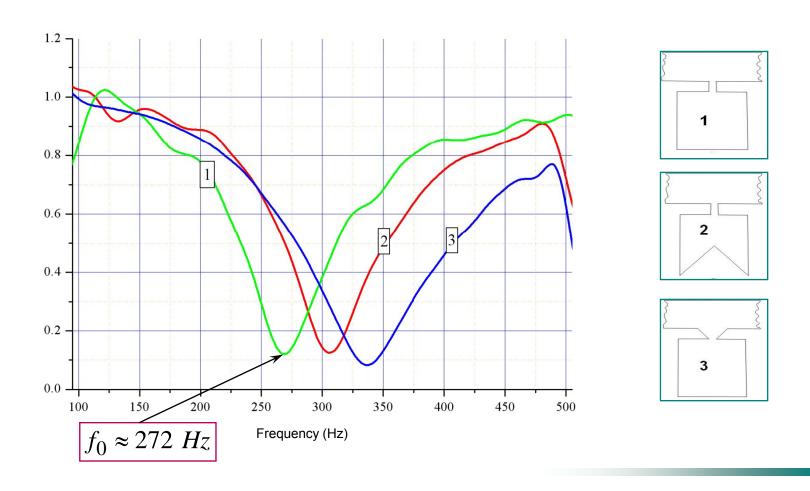
$$V = \frac{B_1}{A_1} \quad W = \frac{A_2}{A_1} \qquad W = V + 1$$

Acoustic impedance

$$\frac{z}{\rho c} = \frac{\delta}{S} \frac{W}{2(1-W)}$$

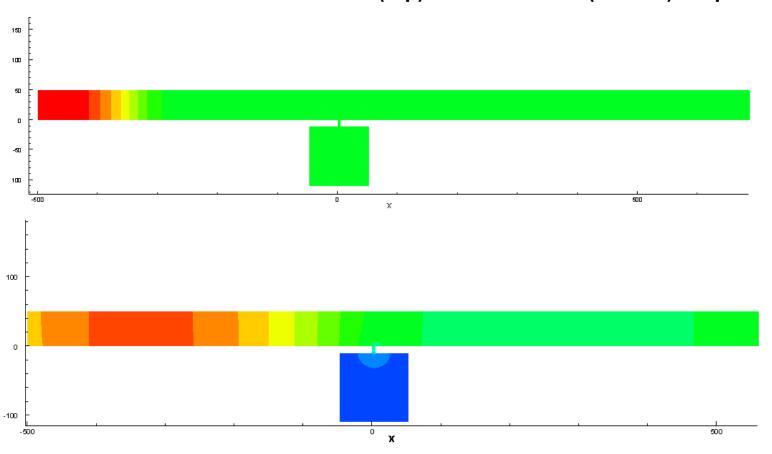
Validation on Helmholtz Resonator

Linear resonance: Transmission coefficient



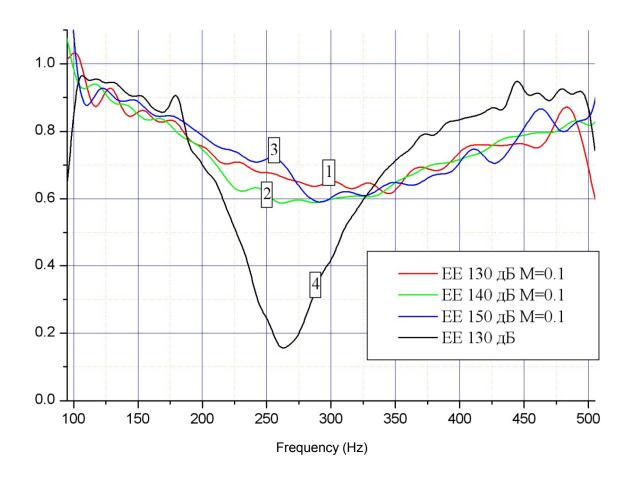
Validation on Helmholtz Resonator

Pressure waves at non-resonance (top) and resonance (bottom) frequencies



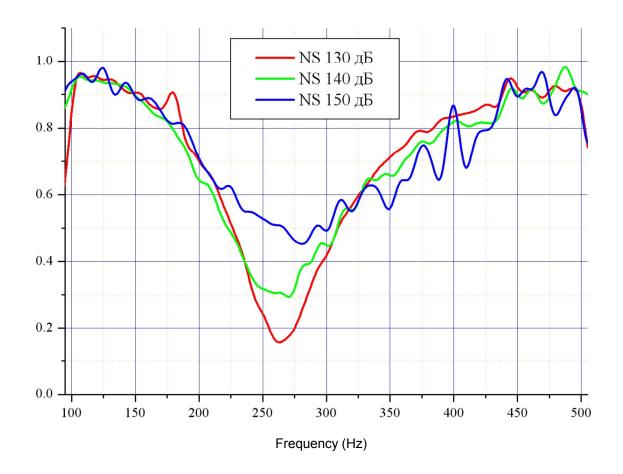
Euler equations: Transmission coefficient

(without and with upstream flow, M=0.5)



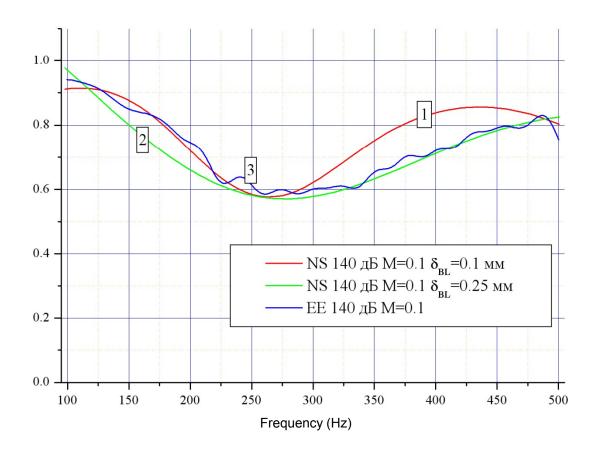
Navier-Stokes equations: Transmission coefficient

(no upstream flow)

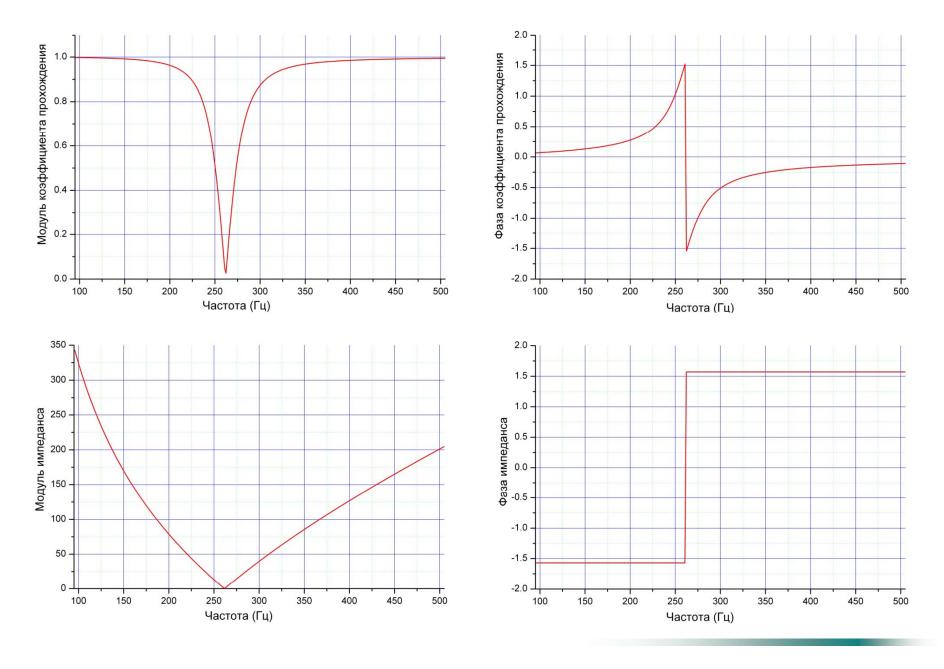


Navier-Stokes equations: Transmission coefficient

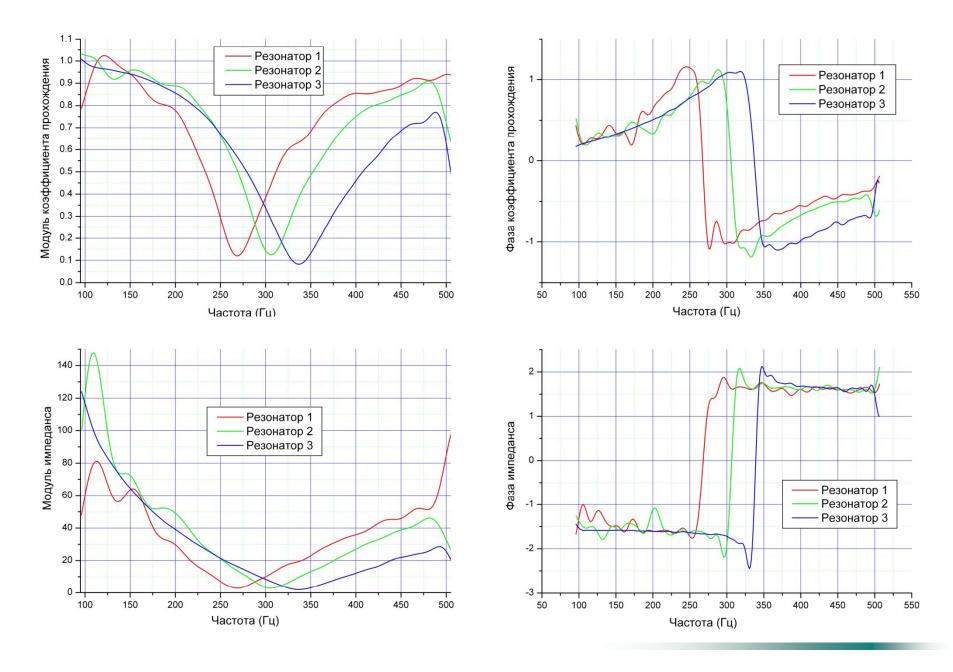
(upstream flow with boundary layers, M=0.1)



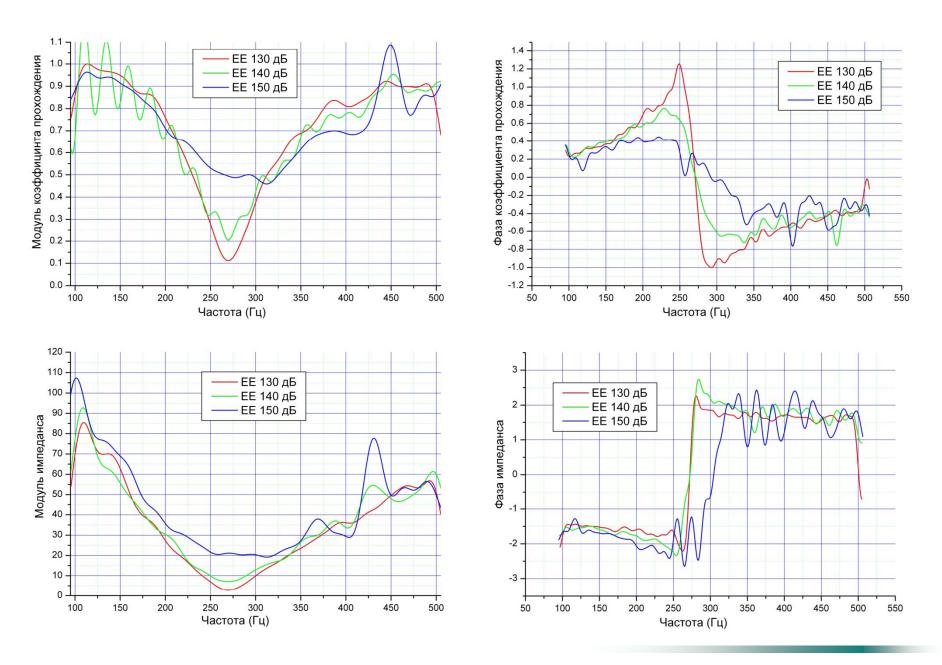
Analytical behavior in linear case



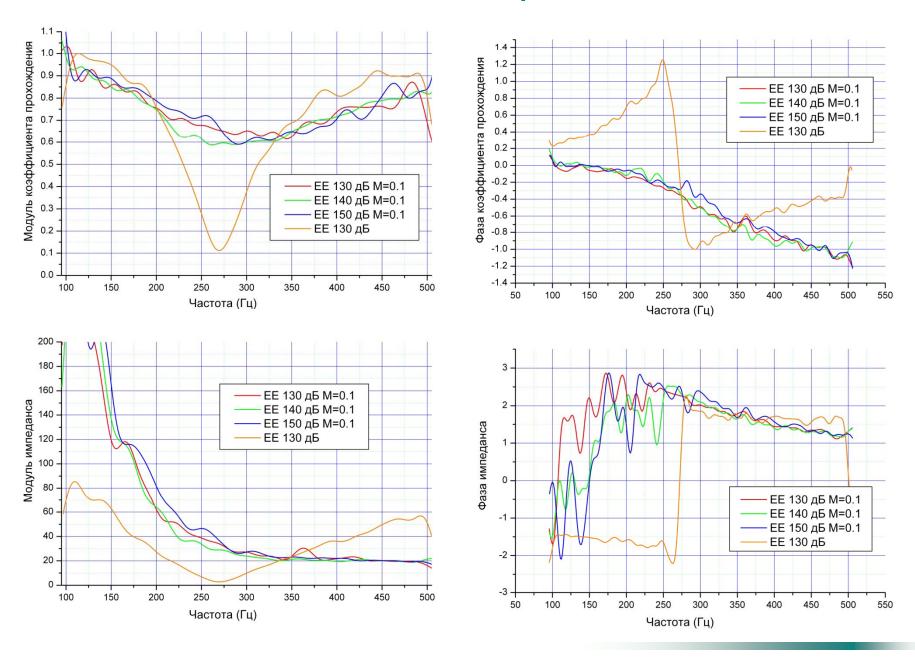
Numerical results in linear case



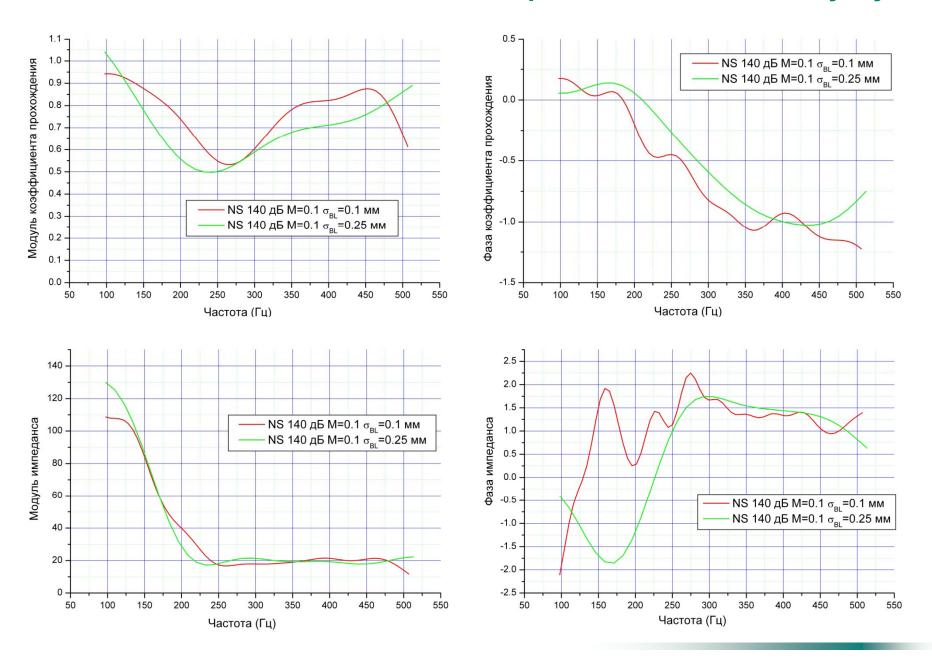
Numerical results in nonlinear case

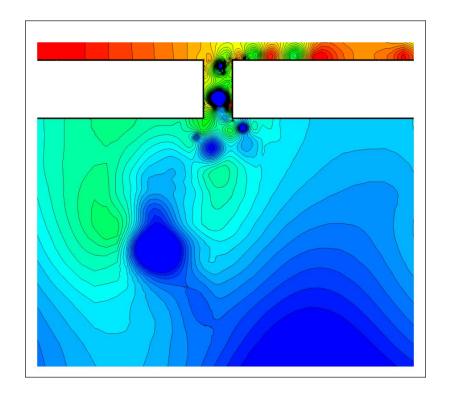


Numerical results in nonlinear case + upstream flow

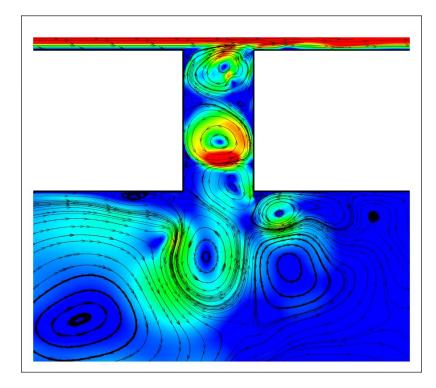


Numerical results in nonlinear case + upstream flow + boundary layer

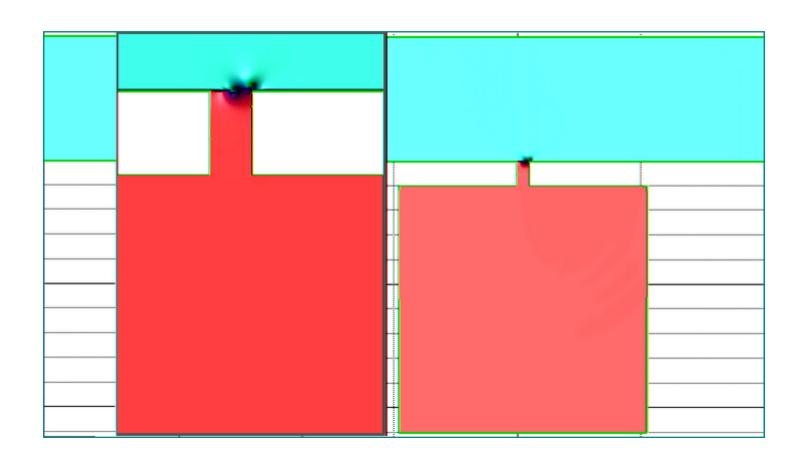




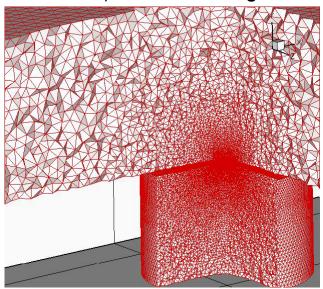
Isolines of pressure



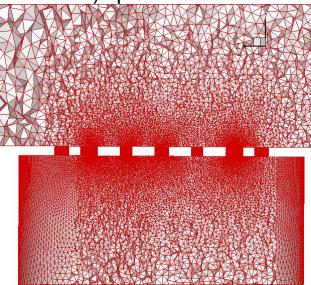
Absolute velocity field and streamtraces

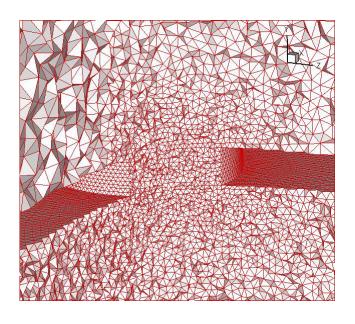


Cases: 1) liner cell a single hole



2) perforated liner cell



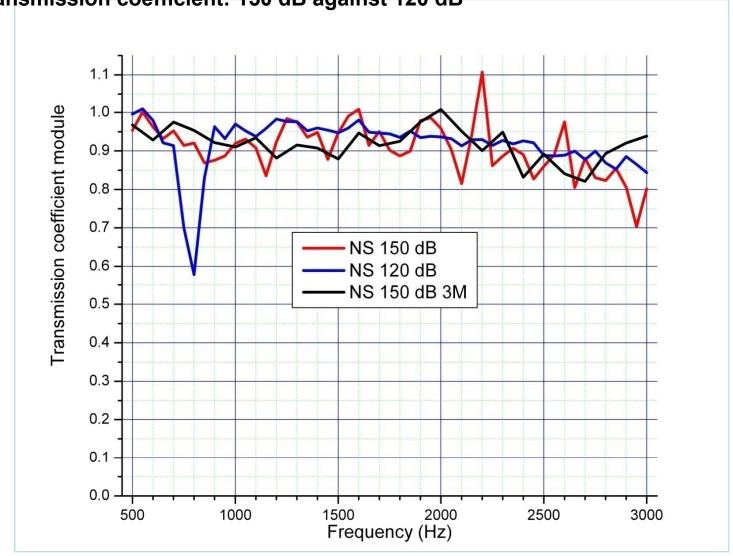


Grids:

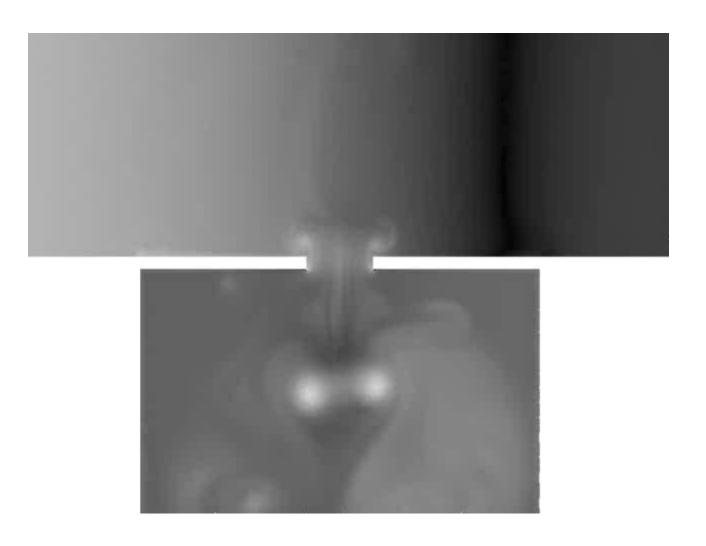
- 1) 613K nodes / 3498K tetras (coarse) 3420K nodes / 20124K tetras (fine)
- 2) 1295K nodes / 7463K tetras

DNS

Liner Cell with Single Hole

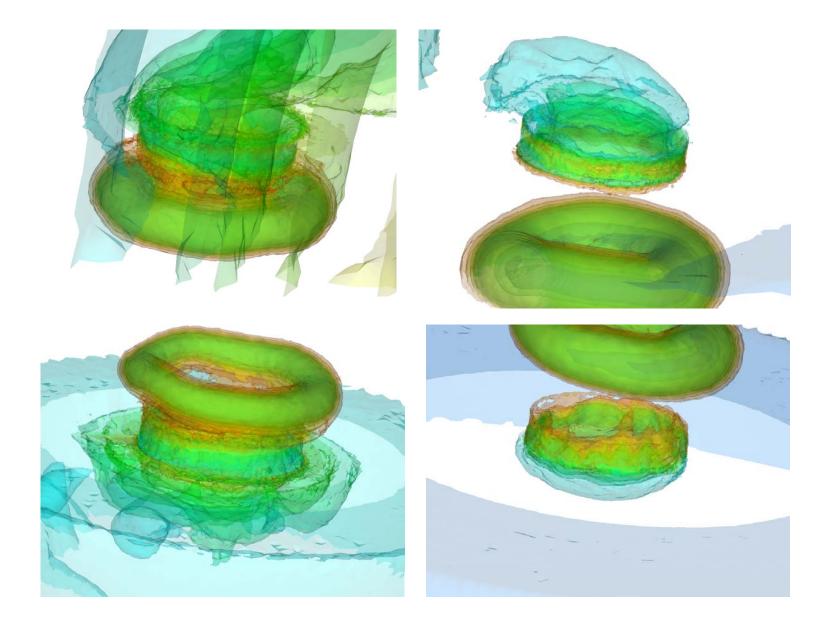


Liner Cell with Single Hole



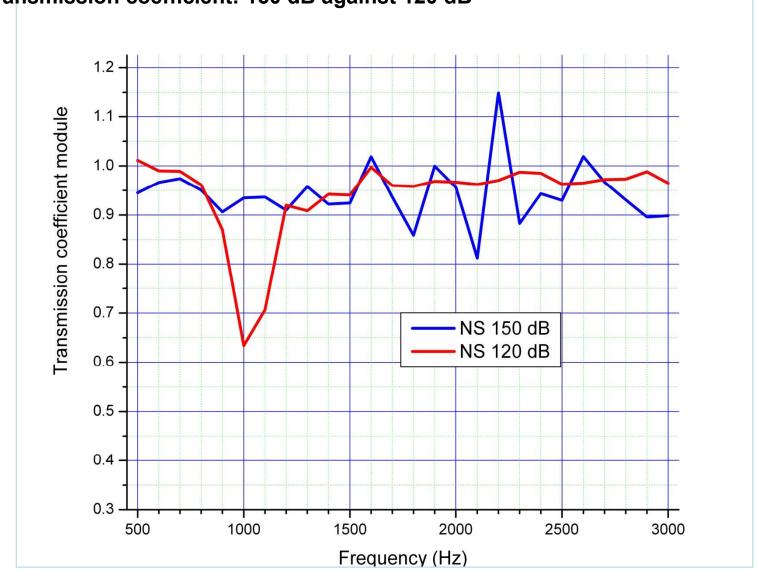
Density

Liner Cell with Single Hole

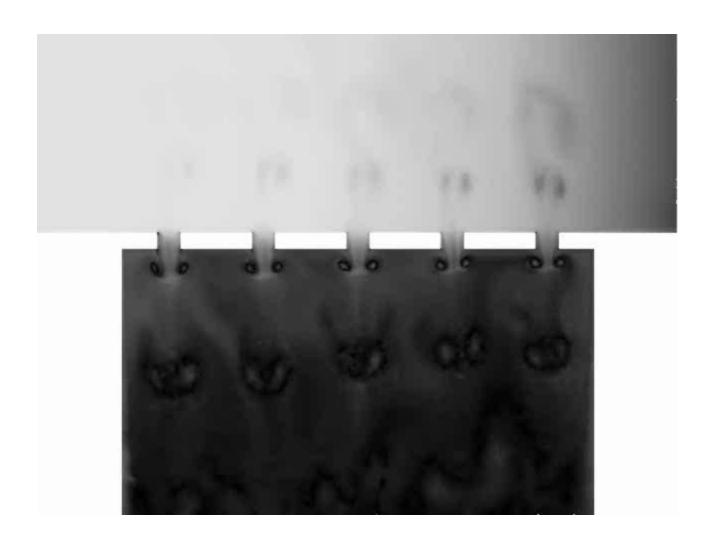


Perforated Liner Cell with 11 Holes

Transmission coefficient: 150 dB against 120 dB

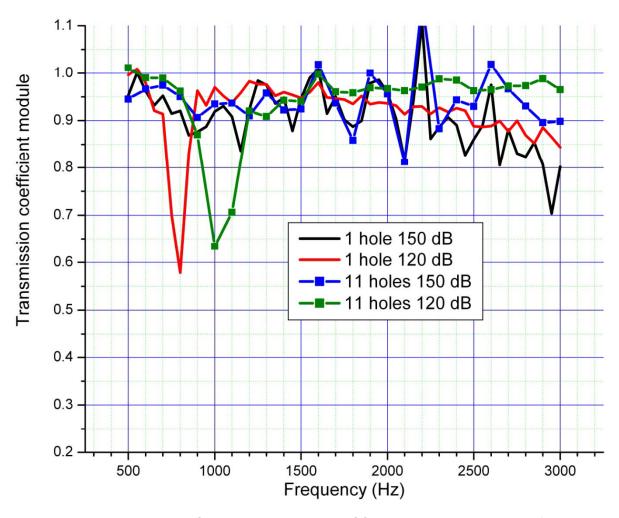


Perforated Liner Cell with 11 Holes



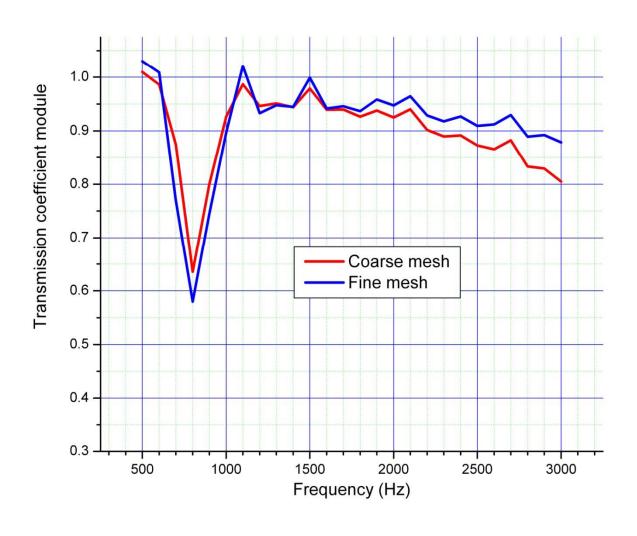
Density

Transmission coefficient: 150 dB against 120 dB, 11 holes against 1 hole



Perforation coefficient is equal

Transmission coefficient: fine grid against coarse grid



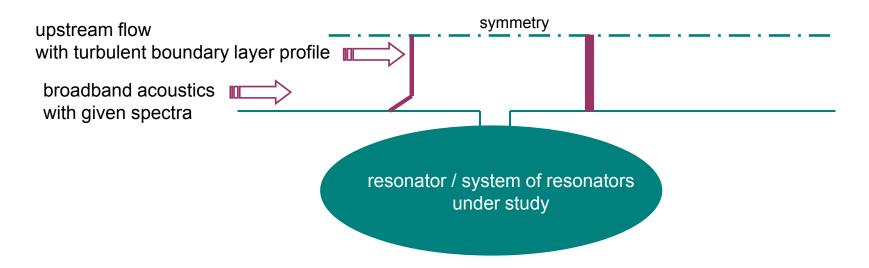
Concluding Remarks

- Computational "testing facilities"
 aimed at studying and optimizing the liner cells
- 2. Extendable to
- systems of a few resonators
- cells of different configurations
- cells of different properties

On-going and Future Work

Extension to turbulent formulations (DES-family)

Careful elaboration of computational experiment formulation



2. Optimization of computational efforts, maximal automatization,...

Thank you!