

Trilateral Workshop Svetlogorsk, 22-25 september 2010

Direct noise computation of a Mach 3.30 jet

N. de Cacqueray, C. Bogey, C. Bailly & D. Juvé

Centre Acoustique, LMFA, UMR 5509 Ecole Centrale de Lyon

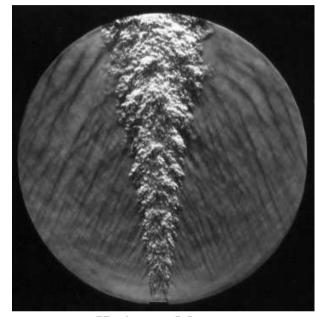
http://acoustique.ec-lyon.fr

Outline

- Introduction
- Present study
 - simulation parameters
 - numerical methods
- Flow field
 - mean flow field properties
 - turbulent flow features along the shear layer
- Acoustic field
 - acoustic near field
 - acoustic far field
- Concluding remarks

Context (1)

- Vibrations at lift off on space launchers induced by acoustic waves
 - propulsive jet noise
 - blast wave
- Propulsive jets properties
 - supersonic flow: $M_e > 2$
 - not perfectly expanded: $p_e \neq p_{\infty}$
 - very high values of stagnation quantities: $T_r > 1000 \; {
 m K} \; {
 m and} \; P_r > 25 \; {
 m bar}$



- → very few experimental facilities exist for these conditions
 (in France: MARTEL facility in Poitiers)
- → numerical simulations difficult but now feasible

Context (2)

• Radiation mechanisms in supersonic jets

- turbulent mixing noise
 Laufer et al., AIAA J., 1976, Panda & Seasholtz, JFM, 2002
- broadband shock-associated noise Tam & Tanna, JSV, 1982, Seiner & Yu, AIAA J., 1984
- screech noise
 Powell et al., JASA, 1992, Berland et al., PoF, 2007
- Mach wave radiation
 McLaughlin et al., JFM, 1975, Tam et al., AIAA J., 1992

He jet at $M_e=2$ Clemens & Paul, PoF, 1993

- Radiation mechanisms in propulsive jets $(M_e > 2)$
 - Mach waves are expected to be dominant Tam & Hu, JFM, 1989, Tam et al., AIAA J., 1992
 - contribution of other noise radiation mechanisms to be quantified

Outline

Introduction

- Present study
 - simulation parameters (for details see de Cacqueray & al., AIAA 2010-3732)
 - numerical methods
- Flow field
 - mean flow field properties
 - turbulent flow features along the shear layer
- Acoustic field
 - acoustic near field
 - acoustic far field
- Concluding remarks

Simulation parameters

Jet exit conditions

- exit quantities : $M_e = 3.3$, $P_e = 0.5$ bar and $T_e = 360$ K ($M_a = 3.47$) (stagnation temperature $T_r = 1144$ K)
- -boundary layer thickness at the nozzle exit: $\delta/r_e = 0.05$
- maximum velocity fluctuations at the nozzle exit: $u'_{rms}/u_e = 0.3\%$

	$oxed{\mathrm{Mach}\ M_e}$	Pressure P_e	Temperature T_e	Reynolds Re
Present computation	3.30	$0.50 \times 10^5 \; \mathrm{Pa}$	360 K	$0.94 imes 10^5$
Experiment*	3.27	$0.51 \times 10^5 \; \mathrm{Pa}$	359 K	$17.5 imes 10^5$

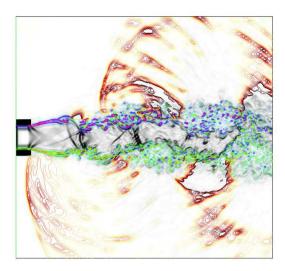
^{*} Varnier & Gély, RT 112/3643, 1998

• LES numerical parameters

- cylindrical mesh: $n_r \times n_z \times n_\theta = 256 \times 840 \times 128 = 28 \times 10^6$ points
- CPU time: 500 hours on a NEC SX-8 (120,000 iterations)

• Far-field wave extrapolation

- -LES data are propagated to $r = 80r_e$ from the nozzle exit
- full non linear Euler equations are solved on a grid containing 210×10^6 points


Cut-off Strouhal number and simulation time

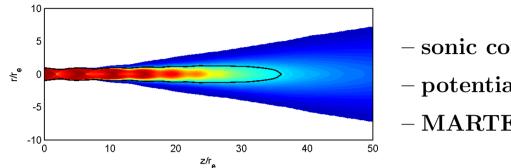
$$-St_cpprox 1.4;\, T=540T_c=540D_e/U_e$$

Numerical approach

• Direct Noise Computation

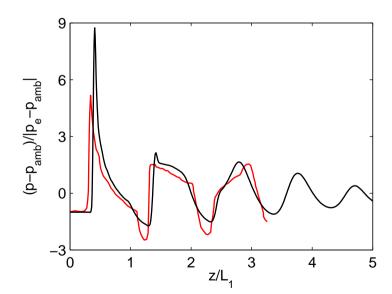
- aerodynamic and acoustic fields are solved
 simultaneously using Navier-Stokes equations
- successful applications to subsonic
 and supersonic jets

Berland, Bogey & Bailly Phys. of Fluids, 2007


- Large-Eddy Simulation based on Relaxation-Filtering
 Bogey & Bailly, J. Fluid Mech., 2009, 626
- In-house finite-difference solver
 - low-dissipation and low-dispersion schemes
 Bogey & Bailly, J. Comput. Phys., 2004, 194(1)
 Berland, Marsden, Bogey & Bailly, J. Comput. Phys., 2007, 224
 - non-reflective boundary conditions and sponge zone
 Bogey & Bailly, Acta Acustica, 2002, 88(4)
 - adaptative and conservative shock-capturing method
 Bogey, de Cacqueray & Bailly, J. Comput. Phys., 2009, 228(5)

Outline

- Introduction
- Present study
 - simulation parameters
 - numerical methods
- Flow field
 - mean flow field properties
 - turbulent flow features along the lip line
- Acoustic field
 - acoustic near field
 - acoustic far field
- Concluding remarks

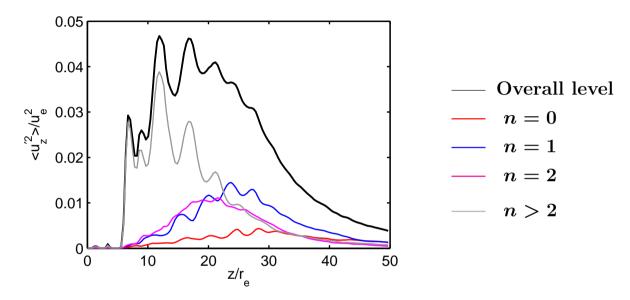

Mean flow field properties

Mean axial velocity

- sonic core : $L_s = 36r_e$
- potential core : $L_c = 20r_e$
- -MARTEL exp. : $L_s = 50r_e$ and $L_c = 24r_e$

• Centerline mean static pressure

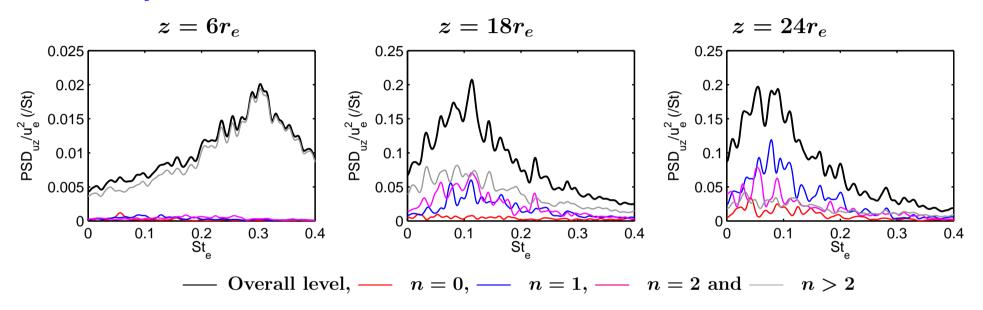
	M_e	M_j	L_1	$ p_e-p_{amb} $
Present LES	3.3	2.83	$4.6r_e$	$0.5 imes 10^5 \; \mathrm{Pa}$
N & S*	2	1.82	$3r_e$	$0.2 \times 10^5 \; \mathrm{Pa}$


rum & Seiner, NASA TM 84521, 1982

vspace/3cm * No-

→ the shape of the first three shocks agrees reasonably well with experimental data (with proper scaling)

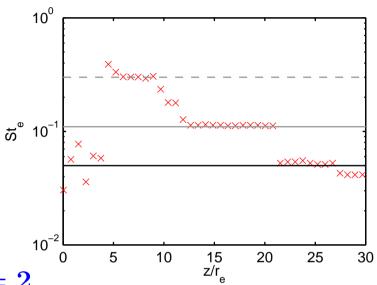
Turbulent flow (1)


ullet Longitudinal turbulent fluctuations and azimuthal decomposition along $r=r_j$

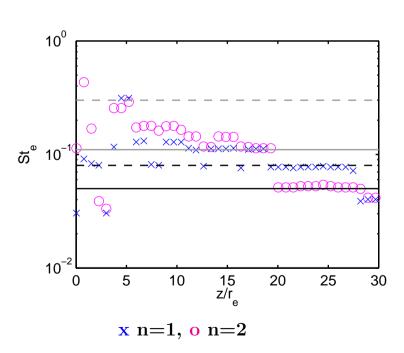
- before the end of the potential core: $(z < 20r_e)$
 - \rightarrow azimuthal modes n > 2 dominate
 - \rightarrow contribution of modes n=0, n=1 and n=2 increases with axial distance
 - \rightarrow mode n = 0 has a low contribution
- after the end of the potential core: $(z>20r_e)$
 - \rightarrow mode n=1 dominates

Turbulent flow (2)

• Frequency analysis of modal components of u'_z at z=6, 18 and 24, for $r=r_j$



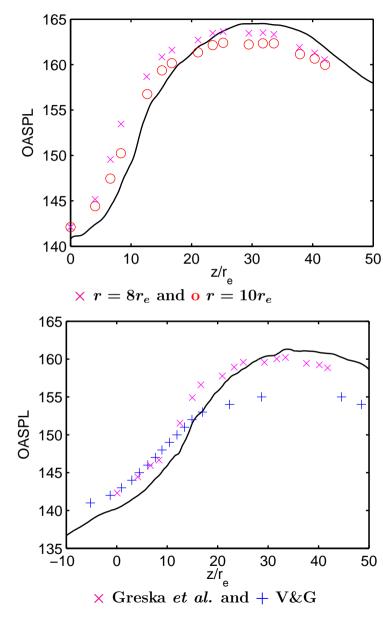
- $-z = 6r_e$: connections between the peak at $St_e = 0.3$ and higher order modes
- $-z = 18r_e$: peaks at $St_e = 0.08, \frac{0.11}{1}$ and 0.22
- $-z = 24r_e$:
 - \rightarrow peaks at $St_e = 0.05, 0.08, 0.09 and 0.11$
 - \rightarrow the peak at $St_e = 0.08$ seems connected to mode n = 1
 - \rightarrow mode n=0 emerges with a maximum at $St_e=0.04$


Turbulent flow (3)

ullet Peak Strouhal numbers of u_z' at $r=r_j$

- before the end of the potential core $(z < 20r_e)$
 - \rightarrow peaks at $St_e = 0.3$ and $St_e = 0.11$
 - → connected to a change of shock motion
- after the end of the potential core $(z\!>\!20r_e)$ peaks at $St_e=0.05$

- Peak Strouhal numbers of modes n=1 and n=2
 - before the end of the potential core $(z < 20r_e)$
 - \rightarrow peaks between $St_e = 0.1$ and $St_e = 0.17$
 - \rightarrow peaks at $St_e = 0.08$ for n = 1 are also noticed
 - after the end of the potential core $(z>20r_e)$
 - \rightarrow peaks at $St_e = 0.05$ for mode n = 2
 - \rightarrow peaks at $St_e = 0.08$ for mode n = 1


Outline

- Introduction
- Present study
 - simulation parameters
 - numerical methods
- Flow field
 - mean flow field properties
 - turbulent flow features along the shear layer
- Acoustic field
 - acoustic near field
 - into the acoustic far field
- Concluding remarks

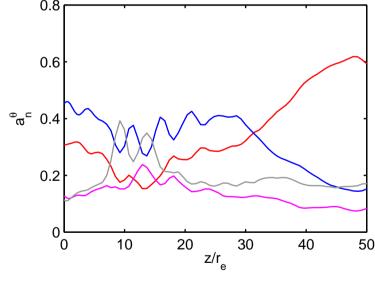
Near field OASPL

ullet Overall pressure levels at $r=9.5r_e$

- measurements of Greska et~al.:
 present LES $M_e=3.3~M_j=2.83~M_a=3.5$ Greska $\exp.M_e=2~M_j=2~M_a=3$ (* AIAA Paper 2008-3026)
- maximum of OASPL around $z = 30r_e$
- rapid growth between $z = 7r_e$ and $z = 20r_e$
- ullet Overall pressure levels at $r=16r_e$
 - measurements of Greska et al. and V&G
 AIAA Paper 2008-3026
 Varnier & Gély, ONERA, RT 112/3643
 - 5dB difference between V&G and Greska (effect of Reynolds number, nozzle exit conditions or reservoir conditions?)

→ good agreement between computation and experiments

Acoustic near field at 9.5 radii (1)

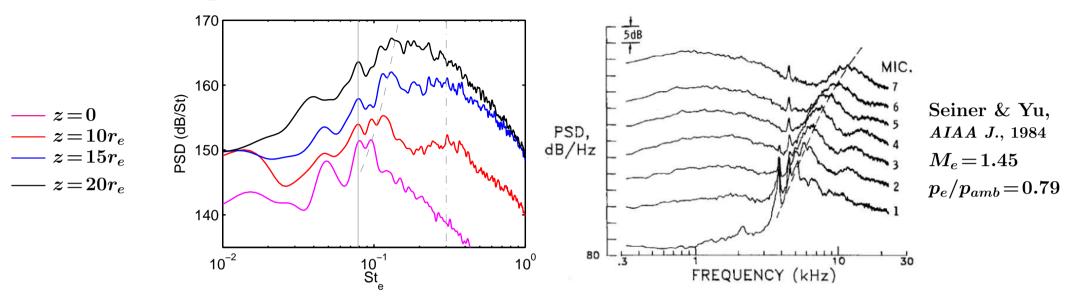

Azimuthal decomposition

- azimuthal cross-correlation functions:

$$R^{ heta}(\delta heta) = rac{< p'(heta)p'(heta+\delta heta)>}{< p'^2(heta)>^{1/2}< p'^2(heta+\delta heta)>^{1/2}}$$

- Fourier sum:

$$R^{ heta}(\delta heta) = \sum_{n=0}^{\infty} a_n^{ heta} \cos(n\delta heta)$$

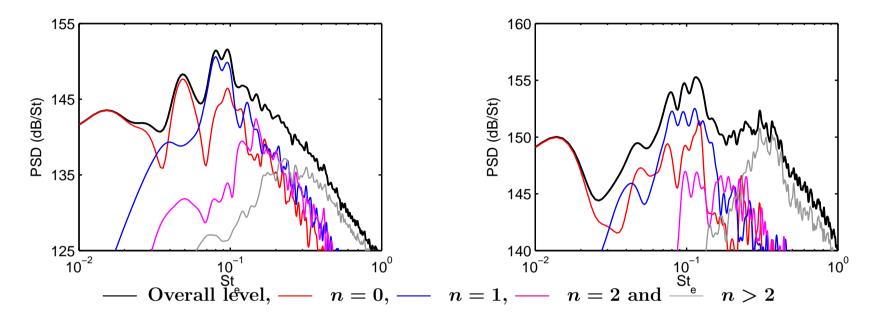

 \rightarrow modes n = 0 and n = 1 are predominant

 \rightarrow the acoustic field is less correlated between $z=7r_e$ and $z=16r_e$

$$-- n=0,$$
 $-- n=1,$ $-- n=2$ and $-- n>2$

Acoustic near field at 9.5 radii (2)

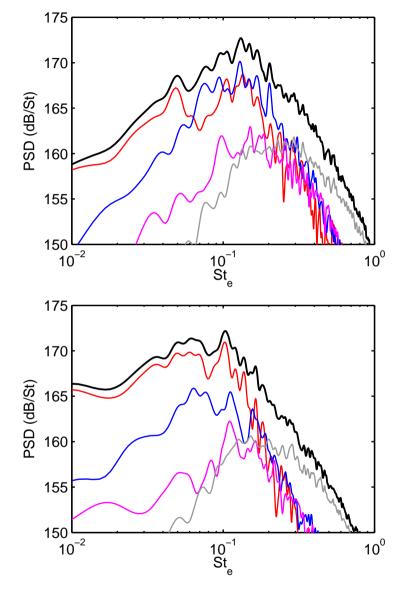
ullet Acoustic spectra between z=0 and $z=20r_e$


- upstream propagating shock-associated noise (Tam et al., JSV, 1986)

$$St_{up} = rac{2r_{e}u_{c}/u_{e}}{L_{shock}(1+M_{c})} = 0.079$$

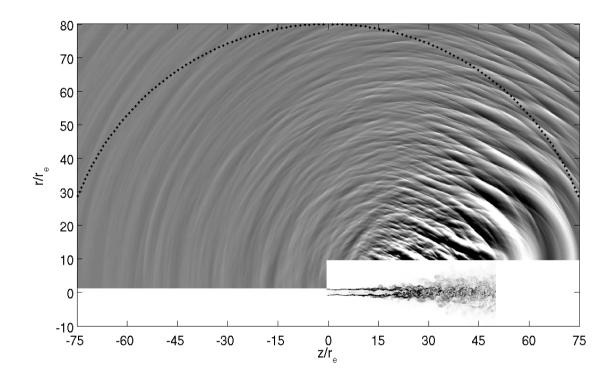
- -low-frequency component observed at $St_e=0.05$
- 'high-frequency' broadband noise around $St_e=0.3$
- broadband spectra at $z=20r_e$
- a qualitative agreement is noticed with near-field measurements by Seiner & Yu for the moving peak

Acoustic near field at 9.5 radii (3)


ullet Azimuthal decomposition at z=0 and $z=10r_e$

- modes n = 0 and n = 1 dominate for low frequencies
 - \rightarrow peak at $St_e=0.05$ associated with mode n=0
 - \rightarrow peak at $St_e = 0.08$ associated with mode n = 1
- at $z = 10r_e$, the broadband noise centered at $St_e = 0.3$ is linked to azimuthal modes higher than 2

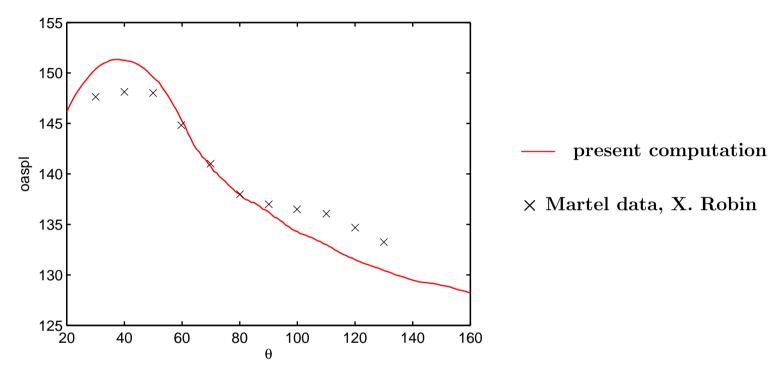
Acoustic near field at 9.5 radii (4)


- ullet Azimuthal decomposition at $z=30r_e$
 - $-z = 30r_e$ corresponds to the maximum of the OASPL
 - modes n = 0 and n = 1 dominate
 - the maximum at $St_e = 0.13$ is linked to mode n = 1
 - a peak at $St_e = 0.05$ is linked to mode n = 0
- ullet Azimuthal decomposition at $z=40r_e$
 - mode n = 0 dominates
 - two peaks at: $St_e \approx 0.055$ and $St_e = 0.1$ (axial velocity fluctuations after end of potential core: $St_e = 0.05$

— Overall level, — n=0, — n=1, — n=2 and — n>2

Acoustic far field (1)

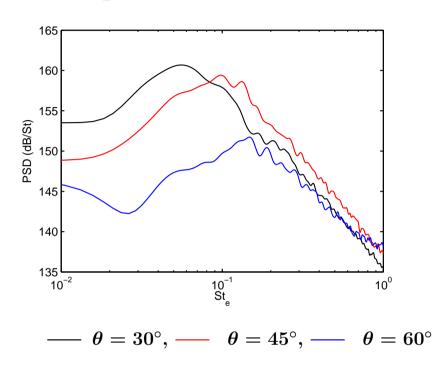
Acoustic far field

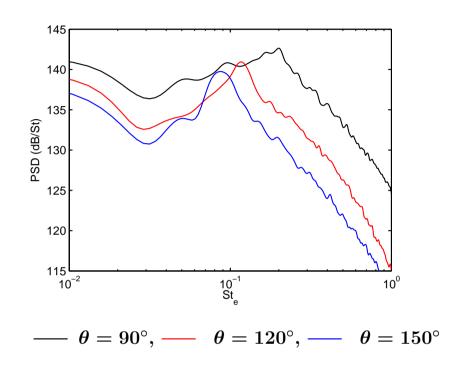


- acoustic waves are propagated to a distance of 80 radii, starting from a control surface located at $r=9.5r_e$
- full (non linear) Euler equations are solved
- same numerical methods are used including the shock-capturing procedure

Mach wave radiation apparent for $\theta=60^\circ$ (very close to expected value $cos\theta=1/M_c$)

Acoustic far field (2)

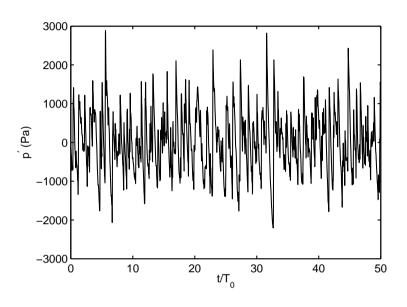

• Far field SPL compared to experimental data

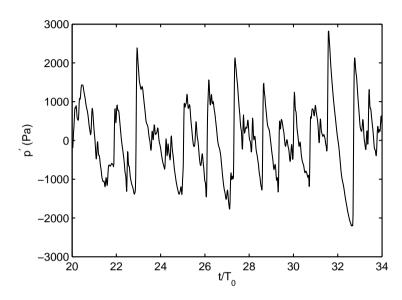


- good agreement with experimental data
- peak SPL 3-4 dB higher than measurements
- note that V&G (Martel) near field data already 5 dB lower than Greska (in downstream direction), and that operating conditions are not fully comparable

Acoustic spectra

• Acoustic spectra

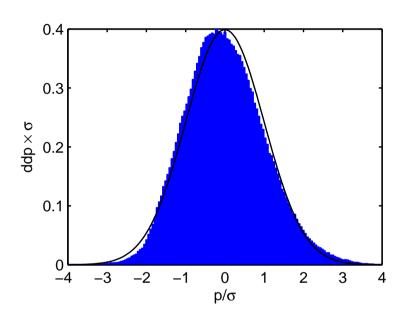

- evidence of shock associated noise in the rear arc


$$(St_e = .09 \ \& \ .12 \ {
m for} \ heta = 150^{\circ} \ \& \ 120^{\circ})$$

nothing special at Mach wave radiation angle (slight reinforcement of high frequencies?)

Mach wave radiation

• Time evolution of acoustic pressure in Mach wave direction



- positive peaks generally larger than negative ones
- consequence: non-gaussian, skewed pdf
- indication of "'crackle" component?

Mach wave radiation (2)

• Pdf of pressure signal

— Gaussian distribution

- $- ext{skewness factor } k = rac{\overline{p^3}}{(\overline{p^2})^{3/2}} pprox 0.4 0.45$
- value somewhat lower than in experiments (crakle detectable for k > .3); measured values up to k = .8.
- however skewness tends to be lower for very high velocity jets as well as the contribution of Mach waves to overall noise level in the peak radiation angle (see Krothapalli & al., AIAA paper 2003-1200)

Concluding remarks

Aerodynamic field

- good qualitative agreement with the few experimental data available
- spectra of turbulent fluctuations exhibit low frequency peaks which may be associated to shock motion

Acoustic field

- good agreement with experimental data for the near-field OASPL
- acoustic near field dominated by modes n = 0 and n = 1
- good agreement also with experimental data for far-field directivity.
 Apparent overestimation of level in the direction of maximum radiation.
- shock-associated noise identified in upstream arc
- 'crackle' component present in the direction of Mach wave radiation

Concluding remarks

• Future work

- more detailed investigation of Mach wave component and relation to crackle
- azimuthal decomposition of far-field pressure and search for a link with turbulent fluctuations
- a second computation is currently running, with exit conditions comparable to recent Martel experiments (exit temperature $T_e = 750K$).
 - Detailed comparison of directivity and spectra to come!